998 resultados para power MOSFET


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To overcome the limitations of existing gate drive topologies an improved gate drive concept is proposed to provide fast, controlled switching of power MOSFETs. The proposed topology exploits the cascode configuration with the inclusion of an active gate clamp to ensure that the driven MOSFET may be turned off under all load conditions. Key operating principles and advantages of the proposed gate drive topology are discussed. Characteristic waveforms are investigated via simulation and experimentation for the cascode driver in an inductive switching application at 375V and 10A. Experimental waveforms compared well with simulations with long gate charging delays (including the Miller plateau) being eliminated from the gate voltage waveform.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A high voltage integrated circuit (HVIC) switch designed as a building block for power converters operating up to 13.56 MHz from off-line voltages is presented. A CMOS-compatible, 500 V power device process is used to integrate control circuitry with a high-speed MOS gate driver and high voltage lateral power MOSFET. Fabrication of the HVIC switches has proceeded in two stages. The first batch of devices showed switching times of less than 5 ns for the power switch and good high frequency performance of a level-shifter for driving half bridge converters. In the second phase, a switch that monolithically integrates all the elements required to form a complete high-frequency converter has been designed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications. 

Relevância:

70.00% 70.00%

Publicador:

Resumo:

L'attività di tesi consiste sia nella calibrazione di un banco di misura per analisi di rumore a basse frequenze nei dispositivi MOSFET di potenza, sia nella valutazione dei relativi e successivi dati sperimentali (con particolare attenzione anche ai processi di stress e recupero applicati ai dispositivi).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grid connected photovoltaic (PV) inverters fall into three broad categories - central, string and module integrated converters (MICs). MICs offer many advantages in performance and flexibility, but are at a cost disadvantage. Two alternative novel approaches proposed by the author - cascaded dc-dc MICs and bypass dc-dc MICs - integrate a simple non-isolated intelligent dc-dc converter with each PV module to provide the advantages of dc-ac MICs at a lower cost. A suitable universal 150 W 5 A dc-dc converter design is presented based on two interleaved MOSFET half bridges. Testing shows zero voltage switching (ZVS) keeps losses under 1 W for bi-directional power flows up to 15 W between two adjacent 12 V PV modules for the bypass application, and efficiencies over 94% for most of the operational power range for the cascaded converter application. Based on the experimental results, potential optimizations to further reduce losses are discussed.