989 resultados para plane-parallel cavity
Resumo:
Here a self-consistent continuum model is presented for a narrow gap plane-parallel dc glow discharge. The set of governing equations consisting of continuity and momentum equations for positive ions, fast (emitted by the cathode) and slow electrons (generated by fast electron impact ionization) coupled with Poisson's equation is treated by the technique of matched asymptotic expansions. Explicit results are obtained in the asymptotic limit: (chi delta) much less than 1, where chi = e Phi(a)/kT, delta = (r(D)/L)(2) (Phi(a) is the applied voltage, r(D) is the Debye radius) and pL much greater than 1(Hg mm cm), where p is the gas pressure and L is the gap length. In the case of high pressure, the electron energy relaxation length is much smaller than the gap length, and so the local field approximation is valid. The discharge space divides naturally into a cathode fall sheath, a quasineutral plasma region, and an anode fall sheath. The electric potential distribution obtained for each region in a (semi)analytical form is asymptotically matched to the adjoining regions in the region of overlap. The effects of the gas pressure, gap length, and applied voltage on the length of each region are investigated. (C) 2000 American Institute of Physics. [S1070-664X(00)01302-1].
Resumo:
The transition of internally heated inclined plane parallel shear flows is examined numerically for the case of finite values of the Prandtl number Pr. We show that as the strength of the homogeneously distributed heat source is increased the basic flow loses stability to two-dimensional perturbations of the transverse roll type in a Hopf bifurcation for the vertical orientation of the fluid layer, whereas perturbations of the longitudinal roll type are most dangerous for a wide range of the value of the angle of inclination. In the case of the horizontal inclination transverse roll and longitudinal roll perturbations share the responsibility for the prime instability. Following the linear stability analysis for the general inclination of the fluid layer our attention is focused on a numerical study of the finite amplitude secondary travelling-wave solutions (TW) that develop from the perturbations of the transverse roll type for the vertical inclination of the fluid layer. The stability of the secondary TW against three-dimensional perturbations is also examined and our study shows that for Pr=0.71 the secondary instability sets in as a quasi-periodic mode, while for Pr=7 it is phase-locked to the secondary TW. The present study complements and extends the recent study by Nagata and Generalis (2002) in the case of vertical inclination for Pr=0.
Resumo:
The stability of internally heated inclined plane parallel shear flows is examined numerically for the case of finite value of the Prandtl number, Pr. The transition in a vertical channel has already been studied for 0≤Pr≤100 with or without the application of an external pressure gradient, where the secondary flow takes the form of travelling waves (TWs) that are spanwise-independent (see works of Nagata and Generalis). In this work, in contrast to work already reported (J. Heat Trans. T. ASME 124 (2002) 635-642), we examine transition where the secondary flow takes the form of longitudinal rolls (LRs), which are independent of the steamwise direction, for Pr=7 and for a specific value of the angle of inclination of the fluid layer without the application of an external pressure gradient. We find possible bifurcation points of the secondary flow by performing a linear stability analysis that determines the neutral curve, where the basic flow, which can have two inflection points, loses stability. The linear stability of the secondary flow against three-dimensional perturbations is also examined numerically for the same value of the angle of inclination by employing Floquet theory. We identify possible bifurcation points for the tertiary flow and show that the bifurcation can be either monotone or oscillatory. © 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Resumo:
The experiment result of Nd:YVO4 laser pumped by laser diode that was amplified by double-cladding Yb3+ fiber is reported. Stable mode-locking pulses are obtained at repetition rate of 320 MHz and the output power is 15 mW. When laser power is amplified by Yb3+- doped double-cladding fiber amplifier, its power can get to 600 mW. Based on these, experiment of double-frequency is carried out, and green laser with power of 4 mW is obtained. (c) 2007 Wiley Periodicals, Inc.
Resumo:
Practical applications of vacuum as an insulator necessitated determining the low-pressure breakdown characteristics of long gap lengths of a point-plane electrode system. The breakdown voltage has been found to vary as the square root of the gap length. Further, with the point electrode as the anode, the values of the breakdown voltages obtained have been found to be larger than those obtained with a plane-parallel electrode system at a corresponding gap length. By applying the theory of the anode heating mechanism as the cause for breakdown, the results have been justified, and by utilizing a field efficiency factor which is the ratio of the average to maximum field, an empirical criterion has been developed. This criterion helps in calculating the breakdown voltage of a nonuniform gap system by the knowledge of the breakdown voltage of a plane-parallel electrode system.
Resumo:
The development of the flow of a granular material down an inclined plane starting from rest is studied as a function of the base roughness. In the simulations, the particles are rough frictional spheres interacting via the Hertz contact law. The rough base is made of a random configuration of fixed spheres with diameter different from the flowing particles, and the base roughness is decreased by decreasing the diameter of the base particles. The transition from an ordered to a disordered flowing state at a critical value of the base particle diameter, first reported by Kumaran and Maheshwari Phys. Fluids 24, 053302 (2012)] for particles with the linear contact model, is observed for the Hertzian contact model as well. The flow development for the ordered and disordered flows is very different. During the development of the disordered flow for the rougher base, there is shearing throughout the height. During the development of the ordered flow for the smoother base, there is a shear layer at the bottom and a plug region with no internal shearing above. In the shear layer, the particles are layered and hexagonally ordered in the plane parallel to the base, and the velocity profile is well approximated by Bagnold law. The flow develops in two phases. In the first phase, the thickness of the shear layer and the maximum velocity increase linearly in time till the shear front reaches the top. In the second phase, after the shear layer encompasses the entire flow, there is a much slower increase in the maximum velocity until the steady state is reached. (C) 2013 AIP Publishing LLC.
Resumo:
A parallel plate interferometer with a reflecting mirror for measuring angular displacement is proposed. A deflection angle of a beam caused by an angular displacement is amplified by use of a reflecting mirror to increase the optical path difference (OPD) in the plane-parallel plate, which provides high sensitivity of the phase measurement. Detection of light transmitted through the plane-parallel plate with a position sensitive detector (PSD) enables high accurate measurement of the initial angle of incidence to the plane-parallel plate with insensitivity to stray light. The improved parallel plate interferometer achieves a measurement repeatability of 10(-8) rad. (C) 2007 The Optical Society of Japan.
Resumo:
The measurement accuracy of a parallel-plate interferometer for angular displacement measurement is analyzed. The measurement accuracy of angular displacement is not only related to the accuracy of phase extraction, but also related to initial incident angle, refraction index and thickness of plane-parallel plate as well as wavelength's stability of laser diode, etc. Theoretical analysis and computer simulation show that the measurement error of the angular displacement bears a minimum value when choosing an optimal initial incident angle in a large range. These analytical results serve as a guide in practical measurement. In this interferometer, reducing the refraction index or increasing the thickness of the parallel plate can improve the measurement accuracy; and the relative error of the phase measurement is 3.0 x 10(-4) corresponding to 1 degrees C temperature variation. Based on these theoretical and experimental results, the measurement accuracy of the parallel-plate interferometer is up to an order of 10(-8) rad. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Molecular dynamics investigation of benzene in one-dimensional channel systems A1PO(4)-5, VPI-5, and carbon nanotube is reported. The results suggest that, in all the three host systems, the plane of benzene is almost perpendicular to the channel axis when the molecule is near the center of the channel and the plane of benzene is parallel to the channel axis when the molecule is near the wall of the channel. The density distribution of benzene as a function of channel length, z and the radial distance, r, from the channel axis is also different in the three host structures. Anisotropy in translational diffusion coefficient, calculated in body-fixed frame of benzene, suggests that benzene prefers to move with its plane parallel to the direction of motion in A1PO(4)-5 and VPI-5 whereas in carbon nanotube the motion occurs predominantly with the plane of the benzene perpendicular to the direction of motion.;Anisotropy associated with the rotational motion is seen to alter significantly in confinement as compared to liquid benzene. In A1PO(4)-5, the rotational anisotropy is reversed as compared to liquid benzene thereby suggesting that anisotropy arising out of molecular geometry can be reduced. Reorientational correlation times for C-6 and C-2 axes Of benzene are reported. Apart from the inertial decay of reorientational correlation function due to free, rotation, two other distinct regimes of decay are observed in narrower channels (AIPO(4)-5 and carbon nanotube): (i) an initial fast decay (0.5-2 ps) and (ii) a slower decay (>2 ps) of reorientational correlation function where C-6 decays slower than C-2 Similar to what is observed in liquid benzene. In the initial fast decay, it is seen that the decay for C-6 is faster than C-2 which is in contrast to what is observed in liquid benzene or for benzene confined in VPI-5.
Resumo:
A new algorithm based on signal subspace approach is proposed for localizing a sound source in shallow water. In the first instance we assumed an ideal channel with plane parallel boundaries and known reflection properties. The sound source is assumed to emit a broadband stationary stochastic signal. The algorithm takes into account the spatial distribution of all images and reflection characteristics of the sea bottom. It is shown that both range and depth of a source can be measured accurately with the help of a vertical array of sensors. For good results the number of sensors should be greater than the number of significant images; however, localization is possible even with a smaller array but at the cost of higher side lobes. Next, we allowed the channel to be stochastically perturbed; this resulted in random phase errors in the reflection coefficients. The most singular effect of the phase errors is to introduce into the spectral matrix an extra term which may be looked upon as a signal generated coloured noise. It is shown through computer simulations that the signal peak height is reduced considerably as a consequence of random phase errors.
Resumo:
The modification of the axisymmetric viscous flow due to relative rotation of the disk or fluid by a translation of the boundary is studied. The fluid is taken to be compressible, and the relative rotation and translation velocity of the disk or fluid are time-dependent. The nonlinear partial differential equations governing the motion are solved numerically using an implicit finite difference scheme and Newton's linearisation technique. Numerical solutions are obtained at various non-dimensional times and disk temperatures. The non-symmetric part of the flow (secondary flow) describing the translation effect generates a velocity field at each plane parallel to the disk. The cartesian components of velocity due to secondary flow exhibit oscillations when the motion is due to rotation of the fluid on a translating disk. Increase in translation velocity produces an increment in the radial skin friction but reduces the tangential skin friction.
Resumo:
We present the first results of an observational programme undertaken to map the fine structure line emission of singly ionized carbon ([ CII] 157 : 7409 mum) over extended regions using a Fabry Perot spectrometer newly installed at the focal plane of a 100 cm balloon- borne far- infrared telescope. This new combination of instruments has a velocity resolution of similar to 200 km s(-1) and an angular resolution of 1.'5. During the first flight, an area of 30' x 15' in Orion A was mapped. These observations extend over a larger area than previous observations, the map is fully sampled and the spectral scanning method used enables reliable estimation of the continuum emission at frequencies adjacent to the [ CII] line. The total [ CII] line luminosity, calculated by considering up to 20% of the maximum line intensity is 0.04% of the luminosity of the far- infrared continuum. We have compared the [ CII] intensity distribution with the velocity- integrated intensity distributions of (CO)-C-13(1- 0), CI(1- 0) and CO( 3- 2) from the literature. Comparison of the [ CII], [ CI] and the radio continuum intensity distributions indicates that the largescale [ CII] emission originates mainly from the neutral gas, except at the position of M 43, where no [ CI] emission corresponding to the [ CII] emission is seen. Substantial part of the [ CII] emission from here originates from the ionized gas. The observed line intensities and ratios have been analyzed using the PDR models by Kaufman et al. ( 1999) to derive the incident UV flux and volume density at a few selected positions. The models reproduce the observations reasonably well at most positions excepting the [ CII] peak ( which coincides with the position of theta(1) Ori C). Possible reason for the failure could be the simplifying assumption of a homogeneous plane parallel slab in place of a more complicated geometry.
Resumo:
Epitaxial films of La4BaCu5O13+δ and La4BaCu4NiO13+δ oxides are grown with a-b plane parallel to (100) of LaAlO3 and SrTiO3 by pulsed-laser deposition. The conductivity measurements performed along the c direction using LaNiO3 as the electrode show metallic behavior whereas they show semiconducting behavior in the a-b plane. Anisotropic transport property of these thin films is explained on the basis of nearly 180° connected Cu–O–Cu chains with an average Cu–O distance of 1.94 Å along the c direction and nearly 180° and 90° connected Cu–O–Cu chains in the a-b plane with short and long Cu–O distances ranging from 1.863 to 2.303 Å. YBa2Cu3O7−x has been grown along (00l) on La4BaCu5O13+δ and shows a Tc of 88 K.
Resumo:
We perform global linear stability analysis and idealized numerical simulations in global thermal balance to understand the condensation of cold gas from hot/virial atmospheres (coronae), in particular the intracluster medium (ICM). We pay particular attention to geometry (e.g. spherical versus plane-parallel) and the nature of the gravitational potential. Global linear analysis gives a similar value for the fastest growing thermal instability modes in spherical and Cartesian geometries. Simulations and observations suggest that cooling in haloes critically depends on the ratio of the cooling time to the free-fall time (t(cool)/t(ff)). Extended cold gas condenses out of the ICM only if this ratio is smaller than a threshold value close to 10. Previous works highlighted the difference between the nature of cold gas condensation in spherical and plane-parallel atmospheres; namely, cold gas condensation appeared easier in spherical atmospheres. This apparent difference due to geometry arises because the previous plane-parallel simulations focused on in situ condensation of multiphase gas but spherical simulations studied condensation anywhere in the box. Unlike previous claims, our non-linear simulations show that there are only minor differences in cold gas condensation, either in situ or anywhere, for different geometries. The amount of cold gas depends on the shape of tcool/tff; gas has more time to condense if gravitational acceleration decreases towards the centre. In our idealized plane-parallel simulations with heating balancing cooling in each layer, there can be significant mass/energy/momentum transfer across layers that can trigger condensation and drive tcool/tff far beyond the critical value close to 10.
Resumo:
提出一种可提高平行平板角位移干涉测量仪测量精度的优化设计方法。对角位移干涉测量系统进行了误差分析,讨论了影响角位移测量精度的主要因素。分析了在干涉仪光路中入射到平行平板上的初始入射角度、平行平板的折射率以及厚度等参数的选取对角位移测量精度的影响。结果表明,优化选取最佳的初始入射角度以及元件参数,并在干涉光路中附加引入一平面反射镜形成光程差放大系统,可实现的角位移测量精度达10-8 rad数量级。