979 resultados para p-Laplace equation Regularity Heisenberg group


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to analyse the regularity of a differential operator, the Kohn Laplacian, in two settings: the Heisenberg group and the strongly pseudoconvex CR manifolds. The Heisenberg group is defined as a space of dimension 2n+1 with a product. It can be seen in two different ways: as a Lie group and as the boundary of the Siegel UpperHalf Space. On the Heisenberg group there exists the tangential CR complex. From this we define its adjoint and the Kohn-Laplacian. Then we obtain estimates for the Kohn-Laplacian and find its solvability and hypoellipticity. For stating L^p and Holder estimates, we talk about homogeneous distributions. In the second part we start working with a manifold M of real dimension 2n+1. We say that M is a CR manifold if some properties are satisfied. More, we say that a CR manifold M is strongly pseudoconvex if the Levi form defined on M is positive defined. Since we will show that the Heisenberg group is a model for the strongly pseudo-convex CR manifolds, we look for an osculating Heisenberg structure in a neighborhood of a point in M, and we want this structure to change smoothly from a point to another. For that, we define Normal Coordinates and we study their properties. We also examinate different Normal Coordinates in the case of a real hypersurface with an induced CR structure. Finally, we define again the CR complex, its adjoint and the Laplacian operator on M. We study these new operators showing subelliptic estimates. For that, we don't need M to be pseudo-complex but we ask less, that is, the Z(q) and the Y(q) conditions. This provides local regularity theorems for Laplacian and show its hypoellipticity on M.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we prove an existence result for local and global isometric immersions of semi-Riemannian surfaces into the three dimensional Heisenberg group endowed with a homogeneous left-invariant Lorentzian metric. As a corollary, we prove a rigidity result for such immersions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical conductivity σ has been calculated for p-doped GaAs/Al0.3Ga0.7As and cubic GaN/Al0.3Ga0.7N thin superlattices (SLs). The calculations are done within a self-consistent approach to the k → ⋅ p → theory by means of a full six-band Luttinger-Kohn Hamiltonian, together with the Poisson equation in a plane wave representation, including exchange correlation effects within the local density approximation. It was also assumed that transport in the SL occurs through extended minibands states for each carrier, and the conductivity is calculated at zero temperature and in low-field ohmic limits by the quasi-chemical Boltzmann kinetic equation. It was shown that the particular minibands structure of the p-doped SLs leads to a plateau-like behavior in the conductivity as a function of the donor concentration and/or the Fermi level energy. In addition, it is shown that the Coulomb and exchange-correlation effects play an important role in these systems, since they determine the bending potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modulus method introduced by H. Grötzsch yields bounds for a mean distortion functional of quasiconformal maps between two annuli mapping the respective boundary components onto each other. P. P. Belinskiĭ studied these inequalities in the plane and identified the family of all minimisers. Beyond the Euclidean framework, a Grötzsch-Belinskiĭ-type inequality has been previously considered for quasiconformal maps between annuli in the Heisenberg group whose boundaries are Korányi spheres. In this note we show that--in contrast to the planar situation--the minimiser in this setting is essentially unique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study discontinuous Galerkin approximations of the p-biharmonic equation for p∈(1,∞) from a variational perspective. We propose a discrete variational formulation of the problem based on an appropriate definition of a finite element Hessian and study convergence of the method (without rates) using a semicontinuity argument. We also present numerical experiments aimed at testing the robustness of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few are studies on P elements that have addressed the saltans group. These studies had shown that species from the cordata and elliptica subgroups were devoid of any discernible P homologous sequences, while species from the parasaltans, sturtevanti, and saltans subgroups all contain P element sequences. Our analyses showed the presence of one to 15 P element insertion sites in species of the saltans group, including Drosophila neocordata and Drosophila emarginata (cordata and elliptica subgroups, respectively). From these species, only those from the parasaltans, sturtevanti, and saltans subgroups harbor canonical P elements and, only those of the last two subgroups seem to harbor putative full-sized elements. Due to the low similarity of the sequences found in D. neocordata and D. emarginata to those earlier described, we suggest that these sequences might be rudimental P element derivatives that were present in the ancestral of the subgenus Sophophora. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we prove a Lions-type compactness embedding result for symmetric unbounded domains of the Heisenberg group. The natural group action on the Heisenberg group TeX is provided by the unitary group U(n) × {1} and its appropriate subgroups, which will be used to construct subspaces with specific symmetry and compactness properties in the Folland-Stein’s horizontal Sobolev space TeX. As an application, we study the multiplicity of solutions for a singular subelliptic problem by exploiting a technique of solving the Rubik-cube applied to subgroups of U(n) × {1}. In our approach we employ concentration compactness, group-theoretical arguments, and variational methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a modulus method for surface families inside a domain in the Heisenberg group and we prove that the stretch map between two Heisenberg spherical rings is a minimiser for the mean distortion among the class of contact quasiconformal maps between these rings which satisfy certain boundary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove analogs of classical almost sure dimension theorems for Euclidean projection mappings in the first Heisenberg group, equipped with a sub-Riemannian metric.