992 resultados para number fields


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the asymptotics conjecture of Malle for dihedral groups Dl of order 2l, where l is an odd prime. We prove the expected lower bound for those groups. For the upper bounds we show that there is a connection to class groups of quadratic number fields. The asymptotic behavior of those class groups is predicted by the Cohen-Lenstra heuristics. Under the assumption of this heuristic we are able to prove the expected upper bounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose new classes of linear codes over integer rings of quadratic extensions of Q, the field of rational numbers. The codes are considered with respect to a Mannheim metric, which is a Manhattan metric modulo a two-dimensional (2-D) grid. In particular, codes over Gaussian integers and Eisenstein-Jacobi integers are extensively studied. Decoding algorithms are proposed for these codes when up to two coordinates of a transmitted code vector are affected by errors of arbitrary Mannheim weight. Moreover, we show that the proposed codes are maximum-distance separable (MDS), with respect to the Hamming distance. The practical interest in such Mannheim-metric codes is their use in coded modulation schemes based on quadrature amplitude modulation (QAM)-type constellations, for which neither the Hamming nor the Lee metric is appropriate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We develop several algorithms for computations in Galois extensions of p-adic fields. Our algorithms are based on existing algorithms for number fields and are exact in the sense that we do not need to consider approximations to p-adic numbers. As an application we describe an algorithmic approach to prove or disprove various conjectures for local and global epsilon constants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Known number theoretical constructions of the lattice E8 use the cyclotomic fields Q(ζ15), Q(ζ20), and Q(ζ24). In this work, an infinite family of Abelian number fields yielding rotated versions of the lattice E 8 is exhibited. © 2012 The Managing Editors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a combined structure for using real, complex, and binary valued vectors for semantic representation. The theory, implementation, and application of this structure are all significant. For the theory underlying quantum interaction, it is important to develop a core set of mathematical operators that describe systems of information, just as core mathematical operators in quantum mechanics are used to describe the behavior of physical systems. The system described in this paper enables us to compare more traditional quantum mechanical models (which use complex state vectors), alongside more generalized quantum models that use real and binary vectors. The implementation of such a system presents fundamental computational challenges. For large and sometimes sparse datasets, the demands on time and space are different for real, complex, and binary vectors. To accommodate these demands, the Semantic Vectors package has been carefully adapted and can now switch between different number types comparatively seamlessly. This paper describes the key abstract operations in our semantic vector models, and describes the implementations for real, complex, and binary vectors. We also discuss some of the key questions that arise in the field of quantum interaction and informatics, explaining how the wide availability of modelling options for different number fields will help to investigate some of these questions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Silver code has captured a lot of attention in the recent past,because of its nice structure and fast decodability. In their recent paper, Hollanti et al. show that the Silver code forms a subset of the natural order of a particular cyclic division algebra (CDA). In this paper, the algebraic structure of this subset is characterized. It is shown that the Silver code is not an ideal in the natural order but a right ideal generated by two elements in a particular order of this CDA. The exact minimum determinant of the normalized Silver code is computed using the ideal structure of the code. The construction of Silver code is then extended to CDAs over other number fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse traite de deux thèmes principaux. Le premier concerne l'étude des empilements apolloniens généralisés de cercles et de sphères. Généralisations des classiques empilements apolloniens, dont l'étude remonte à la Grèce antique, ces objets s'imposent comme particulièrement attractifs en théorie des nombres. Dans cette thèse sera étudié l'ensemble des courbures (les inverses des rayons) des cercles ou sphères de tels empilements. Sous de bonnes conditions, ces courbures s'avèrent être toutes entières. Nous montrerons qu'elles vérifient un principe local-global partiel, nous compterons le nombre de cercles de courbures plus petites qu'une quantité donnée et nous nous intéresserons également à l'étude des courbures premières. Le second thème a trait à la distribution angulaire des idéaux (ou plutôt ici des nombres idéaux) des corps de nombres quadratiques imaginaires (que l'on peut voir comme la distribution des points à coordonnées entières sur des ellipses). Nous montrerons que la discrépance de l'ensemble des angles des nombres idéaux entiers de norme donnée est faible et nous nous intéresserons également au problème des écarts bornés entre les premiers d'extensions quadratiques imaginaires dans des secteurs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let E be a number field and G be a finite group. Let A be any O_E-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] \cong \oplus_xM_x is explicitly computable and each M_x is in fact a matrix ring over a field, this leads to an algorithm that either gives elements \alpha_1,...,\alpha_d \in X such that X = A\alpha_1 \oplus ... \oplusA\alpha_d or determines that no such elements exist. Let L/K be a finite Galois extension of number fields with Galois group G such that E is a subfield of K and put d = [K : E]. The algorithm can be applied to certain Galois modules that arise naturally in this situation. For example, one can take X to be O_L, the ring of algebraic integers of L, and A to be the associated order A(E[G];O_L) \subseteq E[G]. The application of the algorithm to this special situation is implemented in Magma under certain extra hypotheses when K = E = \IQ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sei $N/K$ eine galoissche Zahlkörpererweiterung mit Galoisgruppe $G$, so dass es in $N$ eine Stelle mit voller Zerlegungsgruppe gibt. Die vorliegende Arbeit beschäftigt sich mit Algorithmen, die für das gegebene Fallbeispiel $N/K$, die äquivariante Tamagawazahlvermutung von Burns und Flach für das Paar $(h^0(Spec(N), \mathbb{Z}[G]))$ (numerisch) verifizieren. Grob gesprochen stellt die äquivariante Tamagawazahlvermutung (im Folgenden ETNC) in diesem Spezialfall einen Zusammenhang her zwischen Werten von Artinschen $L$-Reihen zu den absolut irreduziblen Charakteren von $G$ und einer Eulercharakteristik, die man in diesem Fall mit Hilfe einer sogenannten Tatesequenz konstruieren kann. Unter den Voraussetzungen 1. es gibt eine Stelle $v$ von $N$ mit voller Zerlegungsgruppe, 2. jeder irreduzible Charakter $\chi$ von $G$ erfüllt eine der folgenden Bedingungen 2a) $\chi$ ist abelsch, 2b) $\chi(G) \subset \mathbb{Q}$ und $\chi$ ist eine ganzzahlige Linearkombination von induzierten trivialen Charakteren; wird ein Algorithmus entwickelt, der ETNC für jedes Fallbeispiel $N/\mathbb{Q}$ vollständig beweist. Voraussetzung 1. erlaubt es eine Idee von Chinburg ([Chi89]) umzusetzen zur algorithmischen Berechnung von Tatesequenzen. Dabei war es u.a. auch notwendig lokale Fundamentalklassen zu berechnen. Im höchsten zahm verzweigten Fall haben wir hierfür einen Algorithmus entwickelt, der ebenfalls auf den Ideen von Chinburg ([Chi85]) beruht, die auf Arbeiten von Serre [Ser] zurück gehen. Für nicht zahm verzweigte Erweiterungen benutzen wir den von Debeerst ([Deb11]) entwickelten Algorithmus, der ebenfalls auf Serre's Arbeiten beruht. Voraussetzung 2. wird benötigt, um Quotienten aus den $L$-Werten und Regulatoren exakt zu berechnen. Dies gelingt, da wir im Fall von abelschen Charakteren auf die Theorie der zyklotomischen Einheiten zurückgreifen können und im Fall (b) auf die analytische Klassenzahlformel von Zwischenkörpern. Ohne die Voraussetzung 2. liefern die Algorithmen für jedes Fallbeispiel $N/K$ immer noch eine numerische Verifikation bis auf Rechengenauigkeit. Den Algorithmus zur numerischen Verifikation haben wir für $A_4$-Erweiterungen über $\mathbb{Q}$ in das Computeralgebrasystem MAGMA implementiert und für 27 Erweiterungen die äquivariante Tamagawazahlvermutung numerisch verifiziert.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conductor-discriminant formula, namely, the Hasse Theorem, states that if a number field K is fixed by a subgroup H of Gal(Q(zeta(n))/Q), the discriminant of K can be obtained from H by computing the product of the conductors of all characters defined modulo n which are associated to K. By calculating these conductors explicitly, we derive a formula to compute the discriminant of any subfield of Q(zeta(p)r), where p is an odd prime and r is a positive integer. (C) 2002 Elsevier B.V. (USA).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conductor-discriminant formula, namely, the Hasse Theorem, states that if a number field K is fixed by a subgroup H of Gal(ℚ(ζn)/ℚ), the discriminant of K can be obtained from H by computing the product of the conductors of all characters defined modulo n which are associated to K. By calculating these conductors explicitly, we derive a formula to compute the discriminant of any subfield of ℚ(ζpr), where p is an odd rime and r is a positive integer. © 2002 Elsevier Science USA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we propose an innovative methodology to extend the construction of minimum and non-minimum delay perfect codes as a subset of cyclic division algebras over ℚ(ζ3), where the signal constellations are isomorphic to the hexagonal An 2 -rotated lattice, for any channel of any dimension n such that gcd{n, 3) = 1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new constructive family of asymptotically good lattices with respect to sphere packing density is presented. The family has a lattice in every dimension n >= 1. Each lattice is obtained from a conveniently chosen integral ideal in a subfield of the cyclotomic field Q(zeta(q)) where q is the smallest prime congruent to 1 modulo n.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)