A family of asymptotically good lattices having a lattice in each dimension


Autoria(s): Interlando, J. Carmelo; Flores, Andre Luiz; Da Nobrega Neto, Trajano Pires
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

18/03/2015

18/03/2015

01/02/2008

Resumo

A new constructive family of asymptotically good lattices with respect to sphere packing density is presented. The family has a lattice in every dimension n >= 1. Each lattice is obtained from a conveniently chosen integral ideal in a subfield of the cyclotomic field Q(zeta(q)) where q is the smallest prime congruent to 1 modulo n.

Formato

147-154

Identificador

http://dx.doi.org/10.1142/S1793042108001262

International Journal Of Number Theory. Singapore: World Scientific Publ Co Pte Ltd, v. 4, n. 1, p. 147-154, 2008.

1793-0421

http://hdl.handle.net/11449/117219

10.1142/S1793042108001262

WOS:000253123900011

Idioma(s)

eng

Publicador

World Scientific Publ Co Pte Ltd

Relação

International Journal Of Number Theory

Direitos

closedAccess

Palavras-Chave #lattices #sphere packings #center density #number fields #geometry of numbers #cyclotomic fields #Craig's lattices
Tipo

info:eu-repo/semantics/article