A family of asymptotically good lattices having a lattice in each dimension
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
18/03/2015
18/03/2015
01/02/2008
|
Resumo |
A new constructive family of asymptotically good lattices with respect to sphere packing density is presented. The family has a lattice in every dimension n >= 1. Each lattice is obtained from a conveniently chosen integral ideal in a subfield of the cyclotomic field Q(zeta(q)) where q is the smallest prime congruent to 1 modulo n. |
Formato |
147-154 |
Identificador |
http://dx.doi.org/10.1142/S1793042108001262 International Journal Of Number Theory. Singapore: World Scientific Publ Co Pte Ltd, v. 4, n. 1, p. 147-154, 2008. 1793-0421 http://hdl.handle.net/11449/117219 10.1142/S1793042108001262 WOS:000253123900011 |
Idioma(s) |
eng |
Publicador |
World Scientific Publ Co Pte Ltd |
Relação |
International Journal Of Number Theory |
Direitos |
closedAccess |
Palavras-Chave | #lattices #sphere packings #center density #number fields #geometry of numbers #cyclotomic fields #Craig's lattices |
Tipo |
info:eu-repo/semantics/article |