Lattice constellations and codes from quadratic number fields


Autoria(s): Pires Da Nóbrega Neto, T.; Interlando, J. C.; Favareto, O. M.; Elia, M.; Palazzo R., Jr
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

01/05/2001

Resumo

We propose new classes of linear codes over integer rings of quadratic extensions of Q, the field of rational numbers. The codes are considered with respect to a Mannheim metric, which is a Manhattan metric modulo a two-dimensional (2-D) grid. In particular, codes over Gaussian integers and Eisenstein-Jacobi integers are extensively studied. Decoding algorithms are proposed for these codes when up to two coordinates of a transmitted code vector are affected by errors of arbitrary Mannheim weight. Moreover, we show that the proposed codes are maximum-distance separable (MDS), with respect to the Hamming distance. The practical interest in such Mannheim-metric codes is their use in coded modulation schemes based on quadrature amplitude modulation (QAM)-type constellations, for which neither the Hamming nor the Lee metric is appropriate.

Formato

1514-1527

Identificador

http://dx.doi.org/10.1109/18.923731

IEEE Transactions on Information Theory, v. 47, n. 4, p. 1514-1527, 2001.

0018-9448

http://hdl.handle.net/11449/66509

10.1109/18.923731

WOS:000168790600017

2-s2.0-0035334579

Idioma(s)

eng

Relação

IEEE Transactions on Information Theory

Direitos

closedAccess

Palavras-Chave #Algebraic decoding #Euclidean domains #Lattices #Linear codes #Mannheim distance #Number fields #Signal sets matched to groups #Algorithms #Codes (symbols) #Decoding #Error analysis #Linearization #Maximum likelihood estimation #Maximum principle #Number theory #Quadratic programming #Quadrature amplitude modulation #Two dimensional #Vector quantization #Einstein-Jacobi integers #Gaussian integers #Hamming distance #Lattice codes #Lattice constellations #Manhattan metric modulo #Mannheim metric #Maximum distance separable #Quadratic number fields #Information theory
Tipo

info:eu-repo/semantics/article