On computing discriminants of subfields of Q(zeta(pr))
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/10/2002
|
Resumo |
The conductor-discriminant formula, namely, the Hasse Theorem, states that if a number field K is fixed by a subgroup H of Gal(Q(zeta(n))/Q), the discriminant of K can be obtained from H by computing the product of the conductors of all characters defined modulo n which are associated to K. By calculating these conductors explicitly, we derive a formula to compute the discriminant of any subfield of Q(zeta(p)r), where p is an odd prime and r is a positive integer. (C) 2002 Elsevier B.V. (USA). |
Formato |
319-325 |
Identificador |
http://dx.doi.org/10.1006/jnth.2002.2796 Journal of Number Theory. San Diego: Academic Press Inc. Elsevier B.V., v. 96, n. 2, p. 319-325, 2002. 0022-314X http://hdl.handle.net/11449/35981 10.1006/jnth.2002.2796 WOS:000178794500006 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Journal of Number Theory |
Direitos |
openAccess |
Palavras-Chave | #characters #conductors #Cyclotomic fields #discriminants of number fields #Hasse Theorem |
Tipo |
info:eu-repo/semantics/article |