971 resultados para metalorganic vapor phase epitaxy
Resumo:
The structure and chemistry of the interface between a Si(111) substrate and an AlN(0001) thin film grown by metalorganic vapor phase epitaxy have been investigated at a subnanometer scale using high-angle annular dark field imaging and electron energy-loss spectroscopy. 〈1120̄〉AlN ∥ 〈110〉Si and 〈0001〉AlN ∥ 〈111〉 Si epitaxial relations were observed and an Al-face polarity of the AlN thin film was determined. Despite the use of Al deposition on the Si surface prior to the growth, an amorphous interlayer of composition SiNx was identified at the interface. Mechanisms leading to its formation are discussed. © 2010 American Institute of Physics.
Resumo:
Selective area growth (SAG) of GaN on SiO2 stripe-patterned GaN/GaAs(001) substrates was carried out by metalorganic vapor-phase epitaxy. The SAG samples were investigated by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM observations showed that the morphology of SAG GaN is strongly dependent on the window stripe orientation and slightly affected by the orientation relationship between the window stripes and the gas flow. The (I 1 1)B sidewalls formed on the SAG GaN stripes are found to be stable. XRD measurements indicated the full-widths at half-maximum (FWHMs) of cubic GaN (0 0 2) rocking curves are reduced after SAG. The measured FWHMs with omega-axis parallel to [1(1) over bar 0] are always larger than the FWHM values obtained with omega-axis parallel to [I 10], regardless of the orientation relationship between the w-axis and the GaN stripes. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Defect states in cubic GaN epilayers grown on GaAs were investigated with the photoluminescence technique. One shallow donor and two acceptors were identified to be involved in relevant optical transitions. The binding energies of the free excitons, the bound excitons. the donor and the acceptors were determined. These values are in good agreement with recent theoretical results.
Resumo:
Deep trap levels in a Mg-doped GaN grown by metalorganic vapor phase epitaxy are studied with deep level transient spectroscopy (DLTS). The Mg concentration of the sample was 4.8 x 10(19) cm(-3), but the hole concentration was as low as 1.3x10(17) cm-3 at room temperature. The DLTS spectrum has a dominant peak D-1 with an activation energy of 0.41+/-0.05 eV, accompanied by two additional peaks with activation energies of 0.49+/-0.09 eV (D-2) and 0.59+/-0.05 eV (D-3). It was found that the dominant peak D-1 consists of five peaks, each of which has different activation energy and capture cross section. In order to investigate these deep levels further, we performed heat treatment on the same samples to observe the variations of activation energy, capture cross section, and amplitude of DLTS signals. It was found that the longer the heat treatment duration is, the lower the amplitude of DLTS peaks become. This suggests that the decrease of the DLTS signal originates from hydrogen atom outgoing from the film during the annealing process. The possible originality of multiple trap levels was discussed in terms of the Mg-N-H complex. (C) 2000 American Vacuum Society. [S0734-2101(00)01701-2].
Resumo:
Single crystal GaN films have been grown on to an Al2O3 coated (001)Si substrate in a horizontal-type low-pressure MOVPE system. A thin Al2O3 layer is an intermediate layer for the growth of single crystal GaN on to Si although it is only an oriented polycrystal him as shown by reflection high electron diffraction. Moreover, the oxide was not yet converted to a fully single crystal film, even at the stage of high temperature for the GaN overlayer as studied by transmission electron microscopy. Double crystal X-ray diffraction showed that the linewidth of (0002) peak of the X-ray rocking curve of the 1.3 mu m sample was 54 arcmin and the films had heavy mosaic structures. A near band edge peaking at 3.4 eV at room temperature was observed by photoluminescence spectroscopy. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Hole trap levels in a Mg-doped GaN grown by metalorganic vapor phase epitaxy (MOVPE) are studied with deep level transient spectroscopy (DLTS). The Mg concentration of the sample was 4.8 x 10(19) cm(-3), but the hole concentration was as low as 1.3 x 10(17) cm(-3) at room temperature. The DLTS spectrum has a dominant peak D-1 with activation energy of 0.41+/-0.05 eV, accompanied by two additional peaks with activation energies of 0.49+/-0.09 eV (D-2) and 0.59+/-0.05 eV (D-3). It was found that the dominant peak D-1 consists of five peaks, each of which has different activation energy and capture cross section. A relevant model for these levels is presented in relation to the Mg-N-H complexes. (C) 1998 American Institute of Physics. [S0003-6951(98)04340-X].
Resumo:
The growth rate of GaN buffer layers on sapphire grown by metalorganic vapor-phase epitaxy (MOVPE) in an atmospheric pressure, two-channel reactor was studied. The growth rate, as measured using laser reflectance, was found to be dependent on growth temperature, molar flow rate of the sources tin this case, trimethylgallium and ammonia) and the input configuration of sources into the reactor. A model of the GaN buffer layer growth process by MOVPE is proposed to interpret the experimental evidence. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The physical properties of low-temperature-deposited GaN buffer layers with different thicknesses grown by metal-organic vapor-phase epitaxy have been studied. A tentative model for the optimum thickness of buffer layer has been proposed. Heavily Si-doped GaN layers have been grown using silane as the dopant. The electron concentration of Si-doped GaN reached 1.7 x 10(20) cm(-3) with mobility 30 cm(2)/V s at room temperature. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Although metalorganic vapor phase epitaxy (MOVPE) is generally regarded as a non-equillibrium process, it can be assumed that a chemical equilibrium is established at the vapor-solid interface in the diffusion limited region of growth rate. In this paper, an equilibrium model was proposed to calculate the relation between vapor and solid compositions for II-VI ternary alloys. Metastable alloys in the miscibility gap may not be obtained when the growth temperature is lower than the critical temperature of the system. The influence of growth temperature, reactor pressure, input VI/II ratio, and input composition of group VI reactants has been calculated for ZnSSe, ZnSeTe and ZnSTe. The results are compared with experimental data for the ZnSSe and ZnSTe systems.
Resumo:
Optical properties of ordered Ga0.5In0.5P epitaxial layers grown by metalorganic vapor phase epitaxy are investigated by photoluminescence (PL) in a temperature range of 10-200 K using excitation power densities between 0.35 W/cm(2) and 20 W/cm(2). It is found that the intensity of the highest-energy PL peak of the ordered Ga0.5In0.5P epilayer decreases first, then increases and finally goes down again with increasing temperature. A model of ordered Ga0.5In0.5P epitaxial layers is proposed, in which the ordered Ga0.5In0.5P epilayer is regarded as a type-II quantum well structure with band-tail states, and the dependence of PL spectra on the temperature and excitation intensity is reasonably explained. (C) 1995 American Institute of Physics.
Resumo:
国家863计划
Resumo:
Wurtzite single crystal GaN films have been grown onto a gamma-Al2O3/Si(001) substrate in a horizontal-type low pressure MOVPE system. A thin gamma-Al2O3 layer is an intermediate layer for the growth of single crystal GaN on Si although it is only an oriented polycrystal film as shown by reflection high electron diffraction. Moreover, the oxide is not yet converted to a fully single crystal film, even at the stage of high temperature for the GaN layer as studied by transmission electron microscopy. Double crystal x-ray linewidth of (0002) peak of the 1.3 mu m sample is 54 arcmin and the films have heavy mosaic structures. A near band edge peaking at 3.4 eV at room temperature is observed by photoluminescence spectroscopy. Raman scattering does not detect any cubic phase coexistence.
Resumo:
Defect states in cubic GaN epilayers grown on GaAs were investigated with the photoluminescence technique. One shallow donor and two acceptors were identified to be involved in relevant optical transitions. The binding energies of the free excitons, the bound excitons. the donor and the acceptors were determined. These values are in good agreement with recent theoretical results.
Resumo:
The physical properties of low-temperature-deposited GaN buffer layers with different thicknesses grown by metal-organic vapor-phase epitaxy have been studied. A tentative model for the optimum thickness of buffer layer has been proposed. Heavily Si-doped GaN layers have been grown using silane as the dopant. The electron concentration of Si-doped GaN reached 1.7 x 10(20) cm(-3) with mobility 30 cm(2)/V s at room temperature. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Thick nonpolar (10 (1) over bar0) GaN layers were grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) using magnetron sputtered ZnO buffers, while semipolar (10 (1) over bar(3) over bar) GaN layers were obtained by the conventional two-step growth method using the same substrate. The in-plane anisotropic structural characteristics and stress distribution of the epilayers were revealed by high. resolution X-ray diffraction and polarized Raman scattering measurements. Atomic force microscopy (AFM) images revealed that the striated surface morphologies correlated with the basal plane stacking faults for both (10 (1) over bar0) and (10 (1) over bar(3) over bar) GaN films. The m-plane GaN surface showed many triangular-shaped pits aligning uniformly with the tips pointing to the c-axis after etching in boiled KOH, whereas the oblique hillocks appeared on the semipolar epilayers. In addition, the dominant emission at 3.42eV in m-plane GaN films displayed a red shift with respect to that in semipolar epilayers, maybe owing to the different strain states present in the two epitaxial layers. [DOI: 10.1143/JJAP.47.3346]