940 resultados para larval release
Resumo:
Available information on the larval release rhythms of brachyurans is biased to temperate estuarine species and outcomes resulting from some sort of artificial manipulation of ovigerous females. In this study we applied field methods to describe the larval release rhythms of an assemblage of tropical rocky shore crabs. Sampling the broods of ovigerous females of Pachygrapsus transversus at two different shores indicated a spatially consistent semilunar pattern, with larval release maxima around the full and new moon. Yet, synchronism between populations varied considerably, with the pattern obtained at the site exposed to a lower wave action far more apparent. Breeding cohorts at one of the sampled shores apparently belonged to actual age groups composing the ovigerous population. The data suggest that these breeding groups release their larvae in alternate syzygy periods, responding to a lunar cycle instead of the semilunar pattern observed for the whole population. For the description of shorter-term rhythms, temporal series at hour intervals were obtained by sampling the plankton and confinement boxes where ovigerous females were held. Unexpectedly, diurnal release activity prevailed over nocturnal hatching. Yet, only grapsids living higher on the shore exhibited strong preferences over the diel cycle, with P. transversus releasing their larvae during the day and Geograpsus lividus during the night. The pea crab Dissodactylus crinitichelis, the spider crab Epialtus brasiliensis and a suite of xanthoids undertook considerable releasing activity in both periods. Apart from the commensal pea crab D. crinitichelis, all other taxa revealed tide-related rhythms of larval release, with average estimates of the time of maximum hatching always around the time of high tides; usually during the flooding and slack, rather than the ebbing tide. Data obtained for P. transversus females held in confinement boxes indicated that early larval release is mostly due to nocturnal hatching, while zoeal release in diurnal groups took place at the time of high tide. Since nocturnal high tides at the study area occurred late, sometimes close to dusk, early release would allow more time for offshore transport of larvae when the action of potential predators is reduced.
Resumo:
The timing of larval release may greatly affect the survivorship and distribution of pelagic stages and reveal important aspects of life history tactics in marine invertebrates. Endogenous rhythms of breeding individuals and populations are valuable indicators of selected strategies because they are free of the neutral effect of stochastic environmental variation. The high-shore intertidal barnacle Chthamalus bisinuatus exhibits endogenous tidal and tidal amplitude rhythms in a way that larval release would more likely occur during fortnightly neap periods at high tide. Such timing would minimize larval loss due to stranding and promote larval retention close to shore. This fully explains temporal patterns in populations facing the open sea and inhabiting eutrophic areas. However, rhythmic activity breaks down to an irregular pattern in a population within the São Sebastião Channel subjected to large variation of food supply around a mesotrophic average. Peaks of chl a concentration precede release events by 6 d, suggesting resource limitation for egg production within the channel. Also, extreme daily temperatures imposing mortality risk correlate to release rate just 1 d ahead, suggesting a terminal reproductive strategy. Oceanographic conditions apparently dictate whether barnacles follow a rhythmic trend of larval release supported by endogenous timing or, alternatively, respond to the stochastic variation of key environmental factors, resulting in an erratic temporal pattern.
Resumo:
Available information on the larval release rhythms of brachyurans is biased to temperate estuarine species and outcomes resulting from some sort of artificial manipulation of ovigerous females. In this study we applied field methods to describe the larval release rhythms of an assemblage of tropical rocky shore crabs. Sampling the broods of ovigerous females of Pachygrapsus transversus at two different shores indicated a spatially consistent semilunar pattern, with larval release maxima around the full and new moon. Yet, synchronism between populations varied considerably, with the pattern obtained at the site exposed to a lower wave action far more apparent. Breeding cohorts at one of the sampled shores apparently belonged to actual age groups composing the ovigerous population. The data suggest that these breeding groups release their larvae in alternate syzygy periods, responding to a lunar cycle instead of the semilunar pattern observed for the whole population. For the description of shorter-term rhythms, temporal series at hour intervals were obtained by sampling the plankton and confinement boxes where ovigerous females were held. Unexpectedly, diurnal release activity prevailed over nocturnal hatching. Yet, only grapsids living higher on the shore exhibited strong preferences over the diel cycle, with P. transversus releasing their larvae during the day and Geograpsus lividus during the night. The pea crab Dissodactylus crinitichelis, the spider crab Epialtus brasiliensis and a suite of xanthoids undertook considerable releasing activity in both periods. Apart from the commensal pea crab D. crinitichelis, all other taxa revealed tide-related rhythms of larval release, with average estimates of the time of maximum hatching always around the time of high tides; usually during the flooding and slack, rather than the ebbing tide. Data obtained for P. transversus females held in confinement boxes indicated that early larval release is mostly due to nocturnal hatching, while zoeal release in diurnal groups took place at the time of high tide. Since nocturnal high tides at the study area occurred late, sometimes close to dusk, early release would allow more time for offshore transport of larvae when the action of potential predators is reduced.
Resumo:
Ostrea edulis was extremely rare in the wild in Strangford Lough from the early 1900s until renewed spatfall was observed at a number of sites in the 1990s. A monitoring programme was undertaken to investigate the presence and distribution of planktonic oyster larvae at nine sites around the lough between June and September in 1997 and 1998 as a precursor to studies of spatfall patterns. Larval densities at sites in the northern basin of the lough were significantly higher than those in the southern basin where larvae were lacking or in low numbers. Densities and sizes of oyster larvae showed significant temporal variation suggesting pulsed larval release. Larval densities also showed significant spatial variation with higher densities at sites closer to commercial stocks pointing to these as the main source of oyster larvae. This hypothesis was supported during a larval flux study over a complete tidal cycle which indicated a 90% net tidal movement of O. edulis larvae from the entrance of the bay where commercial stocks were held to the main body of the lough. Thus the maintenance of dense commercial stocks of flat oysters may provide the key to the redevelopment of native oyster beds in Strangford Lough and elsewhere by providing an initial broodstock nucleus from which larvae can be exported.
Resumo:
Ocean acidification, the assimilation of atmospheric CO2 by the oceans that decreases the pH and CaCO3 saturation state (Omega) of seawater, is projected to have severe adverse consequences for calcifying organisms. While strong evidence suggests calcification by tropical reef-building corals containing algal symbionts (zooxanthellae) will decline over the next century, likely responses of azooxanthellate corals to ocean acidification are less well understood. Because azooxanthellate corals do not obtain photosynthetic energy from symbionts, they provide a system for studying the direct effects of acidification on energy available for calcification. The solitary azooxanthellate orange cup coral Balanophyllia elegans often lives in low-pH, upwelled waters along the California coast. In an 8-month factorial experiment, we measured the effects of three pCO2 treatments (410, 770, and 1220 µatm) and two feeding frequencies (3-day and 21-day intervals) on "planulation" (larval release) by adult B. elegans, and on the survival, skeletal growth, and calcification of newly settled juveniles. Planulation rates were affected by food level but not pCO2. Juvenile mortality was highest under high pCO2 (1220 µatm) and low food (21-day intervals). Feeding rate had a greater impact on calcification of B. elegans than pCO2. While net calcification was positive even at 1220 µatm (~3 times current atmospheric pCO2), overall calcification declined by ~25-45%, and skeletal density declined by ~35-45% as pCO2 increased from 410 to 1220 µatm. Aragonite crystal morphology changed at high pCO2, becoming significantly shorter but not wider at 1220 µatm. We conclude that food abundance is critical for azooxanthellate coral calcification, and that B. elegans may be partially protected from adverse consequences of ocean acidification in habitats with abundant heterotrophic food.
Resumo:
Early life history stages of marine organisms are generally thought to be more sensitive to environmental stress than adults. Although most marine invertebrates are broadcast spawners, some species are brooders and/or protect their embryos in egg or capsules. Brooding and encapsulation strategies are typically assumed to confer greater safety and protection to embryos, although little is known about the physico-chemical conditions within egg capsules. In the context of ocean acidification, the protective role of encapsulation remains to be investigated. To address this issue, we conducted experiments on the gastropod Crepidula fornicata. This species broods its embryos within capsules located under the female and veliger larvae are released directly into the water column. C. fornicata adults were reared at the current level of CO2 partial pressure (pCO2) (390 µatm) and at elevated levels (750 and 1400 µatm) before and after fertilization and until larval release, such that larval development occurred entirely at a given pCO2. The pCO2 effects on shell morphology, the frequency of abnormalities and mineralization level were investigated on released larvae. Shell length decreased by 6% and shell surface area by 11% at elevated pCO2 (1400 µatm). The percentage of abnormalities was 1.5- to 4-fold higher at 750 µatm and 1400 µatm pCO2, respectively, than at 390 µatm. The intensity of birefringence, used as a proxy for the mineralization level of the larval shell, also decreased with increasing pCO2. These negative results are likely explained by increased intracapsular acidosis due to elevated pCO2 in extracapsular seawater. The encapsulation of C. fornicata embryos did not protect them against the deleterious effects of a predicted pCO2 increase. Nevertheless, C. fornicata larvae seemed less affected than other mollusk species. Further studies are needed to identify the critical points of the life cycle in this species in light of future ocean acidification.
Resumo:
The morphological and histochemical features of degeneration in honeybee (Apis mellifera) salivary glands were investigated in 5th instar larvae and in the pre-pupal period. The distribution and activity patterns of acid phosphatase enzyme were also analysed. As a routine, the larval salivary glands were fixed and processed for light microscopy and transmission electron microscopy. Tissue sections were subsequently stained with haematoxylin-eosin, bromophenol blue, silver, or a variant of the critical electrolyte concentration (CEC) method. Ultrathin sections were contrasted with uranyl acetate and lead citrate. Glands were processed for the histochemical and cytochemical localization of acid phosphatase, as well as biochemical assay to detect its activity pattern. Acid phosphatase activity was histochemically detected in all the salivary glands analysed. The cytochemical results showed acid phosphatase in vesicles, Golgi apparatus and lysosomes during the secretory phase and, additionally, in autophagic structures and luminal secretion during the degenerative phase. These findings were in agreement with the biochemical assay. At the end of the 5th instar, the glandular cells had a vacuolated cytoplasm and pyknotic nuclei, and epithelial cells were shed into the glandular lumen. The transition phase from the 5th instar to the pre-pupal period was characterized by intense vacuolation of the basal cytoplasm and release of parts of the cytoplasm into the lumen by apical blebbing; these blebs contained cytoplasmic RNA, rough endoplasmic reticule and, occasionally, nuclear material. In the pre-pupal phase, the glandular epithelium showed progressive degeneration so that at the end of this phase only nuclei and remnants of the cytoplasm were observed. The nuclei were pyknotic, with peripheral chromatin and blebs. The gland remained in the haemolymph and was recycled during metamorphosis. The programmed cell death in this gland represented a morphological form intermediate between apoptosis and autophagy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJECTIVES: The disease alveolar echinococcosis (AE), caused by the larval stage of the cestode Echinococcus multilocularis, is fatal if treatment is unsuccessful. Current treatment options are, at best, parasitostatic, and involve taking benzimidazoles (albendazole, mebendazole) for the whole of a patient's life. In conjunction with the recent development of optimized procedures for E. multilocularis metacestode cultivation, we aimed to develop a rapid and reliable drug screening test, which enables efficient screening of a large number of compounds in a relatively short time frame. METHODS: Metacestodes were treated in vitro with albendazole, the nitro-thiazole nitazoxanide and 29 nitazoxanide derivatives. The resulting leakage of phosphoglucose isomerase (PGI) activity into the medium supernatant was measured and provided an indication of compound efficacy. RESULTS: We show that upon in vitro culture of E. multilocularis metacestodes in the presence of active drugs such as albendazole, the nitro-thiazole nitazoxanide and 30 different nitazoxanide derivatives, the activity of PGI in culture supernatants increased. The increase in PGI activity correlated with the progressive degeneration and destruction of metacestode tissue in a time- and concentration-dependent manner, which allowed us to perform a structure-activity relationship analysis on the thiazolide compounds used in this study. CONCLUSIONS: The assay presented here is inexpensive, rapid, can be used in 24- and 96-well formats and will serve as an ideal tool for first-round in vitro tests on the efficacy of large numbers of antiparasitic compounds.
Resumo:
Wasps of the genus Trichogramma parasitise the eggs of Lepidoptera. They may deposit one or many eggs in each host. Survival is high at low density but reaches a plateau as density increases. To reveal the mechanism by which excess larvae die we chose a lepidopteran host that has flattened, transparent eggs and used video microscopy to record novel feeding behaviours and interactions of larval Trichogramma carverae (Oatman and Pinto) at different densities. Single larvae show a rapid food ingestion phase, followed by a period of extensive saliva release. Ultimately the host egg is completely consumed. The larva then extracts excess moisture from the egg, providing a dry environment for pupation. When multiple larvae are present, the initial scramble for food results in the larvae consuming all of the egg contents early in development. All larvae survive if there is sufficient food for all to reach a threshold developmental stage. If not, physical proximity results in attack and consumption of others, continuing until the surviving larvae reach the threshold stage beyond which attacks seem to be no longer effective. The number of larvae remaining at the end of rapid ingestion dictates how many will survive to emerge as adults.
Resumo:
Ocean acidification (OA), the reduction of ocean pH due to hydration of atmospheric CO2, is known to affect growth and survival of marine invertebrate larvae. Survival and transport of vulnerable planktonic larval stages play important roles in determining population dynamics and community structures in coastal ecosystems. Here, we show that larvae of the purple urchin, Strongylocentrotus purpuratus, underwent high-frequency budding (release of blastula-like particles) when exposed to elevated pCO2 level (>700 µatm). Budding was observed in >50 % of the population and was synchronized over short periods of time (~24 h), suggesting this phenomenon may be previously overlooked. Although budding can be a mechanism through which larval echinoids asexually reproduce, here, the released buds did not develop into viable clones. OA-induced budding and the associated reduction in larval size suggest new hypotheses regarding physiological and ecological tradeoffs between short-term benefits (e.g. metabolic savings and predation escape) and long-term costs (e.g. tissue loss and delayed development) in the face of climate change.
Resumo:
The release of ultrafine particles (UFP) from laser printers and office equipment was analyzed using a particle counter (FMPS; Fast Mobility Particle Sizer) with a high time resolution, as well as the appropriate mathematical models. Measurements were carried out in a 1 m³ chamber, a 24 m³ chamber and an office. The time-dependent emission rates were calculated for these environments using a deconvolution model, after which the total amount of emitted particles was calculated. The total amounts of released particles were found to be independent of the environmental parameters and therefore, in principle, they were appropriate for the comparison of different printers. On the basis of the time-dependent emission rates, “initial burst” emitters and constant emitters could also be distinguished. In the case of an “initial burst” emitter, the comparison to other devices is generally affected by strong variations between individual measurements. When conducting exposure assessments for UFP in an office, the spatial distribution of the particles also had to be considered. In this work, the spatial distribution was predicted on a case by case basis, using CFD simulation.