Ocean acidification induces budding in larval sea urchins


Autoria(s): Chan, Kit Yu Karen; Grünbaum, Daniel; Arnberg, Maj; Thorndyke, Mike; Dupont, Sam
Data(s)

20/03/2012

Resumo

Ocean acidification (OA), the reduction of ocean pH due to hydration of atmospheric CO2, is known to affect growth and survival of marine invertebrate larvae. Survival and transport of vulnerable planktonic larval stages play important roles in determining population dynamics and community structures in coastal ecosystems. Here, we show that larvae of the purple urchin, Strongylocentrotus purpuratus, underwent high-frequency budding (release of blastula-like particles) when exposed to elevated pCO2 level (>700 µatm). Budding was observed in >50 % of the population and was synchronized over short periods of time (~24 h), suggesting this phenomenon may be previously overlooked. Although budding can be a mechanism through which larval echinoids asexually reproduce, here, the released buds did not develop into viable clones. OA-induced budding and the associated reduction in larval size suggest new hypotheses regarding physiological and ecological tradeoffs between short-term benefits (e.g. metabolic savings and predation escape) and long-term costs (e.g. tissue loss and delayed development) in the face of climate change.

Formato

text/tab-separated-values, 2643 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.830736

doi:10.1594/PANGAEA.830736

Idioma(s)

en

Publicador

PANGAEA

Relação

Lavigne, Héloise; Gattuso, Jean-Pierre (2011): seacarb: seawater carbonate chemistry with R. R package version 2.4. https://cran.r-project.org/package=seacarb

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Chan, Kit Yu Karen; Grünbaum, Daniel; Arnberg, Maj; Thorndyke, Mike; Dupont, Sam (2012): Ocean acidification induces budding in larval sea urchins. Marine Biology, 160(8), 2129-2135, doi:10.1007/s00227-012-2103-6

Palavras-Chave #Age; Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Aragonite saturation state, standard error; Bicarbonate ion; Calcite saturation state; Calcite saturation state, standard error; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate system computation flag; Carbon dioxide; echinoderms; ECO2; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; laboratory; morphology; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Particle density, normalized; Particle density, standard error; Percentage; pH; pH, standard error; Potentiometric; reproduction; Salinity; Species; Sub-seabed CO2 Storage: Impact on Marine Ecosystems; Temperature, water; Treatment
Tipo

Dataset