Does Encapsulation Protect Embryos from the Effects of Ocean Acidification? The Example of Crepidula fornicata
Cobertura |
LATITUDE: 48.666920 * LONGITUDE: -3.883580 * DATE/TIME START: 2011-11-30T00:00:00 * DATE/TIME END: 2011-11-30T00:00:00 |
---|---|
Data(s) |
18/06/2014
|
Resumo |
Early life history stages of marine organisms are generally thought to be more sensitive to environmental stress than adults. Although most marine invertebrates are broadcast spawners, some species are brooders and/or protect their embryos in egg or capsules. Brooding and encapsulation strategies are typically assumed to confer greater safety and protection to embryos, although little is known about the physico-chemical conditions within egg capsules. In the context of ocean acidification, the protective role of encapsulation remains to be investigated. To address this issue, we conducted experiments on the gastropod Crepidula fornicata. This species broods its embryos within capsules located under the female and veliger larvae are released directly into the water column. C. fornicata adults were reared at the current level of CO2 partial pressure (pCO2) (390 µatm) and at elevated levels (750 and 1400 µatm) before and after fertilization and until larval release, such that larval development occurred entirely at a given pCO2. The pCO2 effects on shell morphology, the frequency of abnormalities and mineralization level were investigated on released larvae. Shell length decreased by 6% and shell surface area by 11% at elevated pCO2 (1400 µatm). The percentage of abnormalities was 1.5- to 4-fold higher at 750 µatm and 1400 µatm pCO2, respectively, than at 390 µatm. The intensity of birefringence, used as a proxy for the mineralization level of the larval shell, also decreased with increasing pCO2. These negative results are likely explained by increased intracapsular acidosis due to elevated pCO2 in extracapsular seawater. The encapsulation of C. fornicata embryos did not protect them against the deleterious effects of a predicted pCO2 increase. Nevertheless, C. fornicata larvae seemed less affected than other mollusk species. Further studies are needed to identify the critical points of the life cycle in this species in light of future ocean acidification. |
Formato |
text/tab-separated-values, 6822 data points |
Identificador |
https://doi.pangaea.de/10.1594/PANGAEA.833402 doi:10.1594/PANGAEA.833402 |
Idioma(s) |
en |
Publicador |
PANGAEA |
Relação |
Lavigne, Héloise; Epitalon, Jean-Marie; Gattuso, Jean-Pierre (2014): seacarb: seawater carbonate chemistry with R. R package version 3.0. https://cran.r-project.org/package=seacarb |
Direitos |
CC-BY: Creative Commons Attribution 3.0 Unported Access constraints: unrestricted |
Fonte |
Supplement to: Noisette, Fanny; Comtet, Thierry; Legrand, Erwann; Bordeyne, Francois; Davoult, Dominique; Martin, Sophie (2014): Does Encapsulation Protect Embryos from the Effects of Ocean Acidification? The Example of Crepidula fornicata. PLoS ONE, 9(3), e93021, doi:10.1371/journal.pone.0093021 |
Palavras-Chave | #Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Aragonite saturation state, standard error; Area; Bicarbonate ion; Birefringence intensity; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Distance; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Height; laboratory; Length; mollusks; Morlaix_Bay; morphology; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Plane angle; Potentiometric; Potentiometric titration; Ratio; Replicates; reproduction; Salinity; Species; Temperature, water; Temperature, water, standard error |
Tipo |
Dataset |