994 resultados para driving range mowing
Resumo:
Maintenance is a time consuming and expensive task for any golf course or driving range manager. For a golf course the primary tasks are grass mowing and maintenance (fertilizer and herbicide spreading), while for a driving range mowing, maintenance and ball collection are required. All these tasks require an operator to drive a vehicle along paths which are generally predefined. This paper presents some preliminary in-field tsting results for an automated tractor vehicle performing golf ball collection on an actual driving range, and mowing on difficult unstructured terrain.
Resumo:
The University of Queensland UltraCommuter project is the demonstration of an ultra-light weight, low drag, energy efficient and low polluting, electric commuter vehicle equipped with a 2.5m2 on-board solar array. A key goal of the project is to make the vehicle predominantly self-sufficient from solar power for normal driving purposes , so that it does not require charging or refuelling from off-board sources. This paper examines the technical feasibility of the solar-powered commuter vehicle concept, as it applies the UltraCommuter project. A parametric description of a solar-powered commuter vehicle is presented. Real solar insolation data is then used to predict the solar driving range for the UltraCommuter and this is compared to typical urban usage patterns for commuter vehicles in Queensland. A comparative analysis of annual greenhouse gas emissions from the vehicle is also presented. The results show that the UltraCommuter’s on-board solar array can provide substantial supplementation of the energy required for normal driving, powering 90% of annual travel needs for an average QLD passenger vehicle. The vehicle also has excellent potential to reduce annual greenhouse gas emissions from the private transport sector, achieving a 98% reduction in CO2 emissions when compared to the average QLD passenger vehicle. Lastly, the vehicle battery pack provides for tolerance to consecutive days of poor weather without resorting to grid charging, giving uninterrupted functionality to the user. These results hold great promise for the technical feasibility of the solar-powered commuter vehicle concept.
Resumo:
The pulse power characteristics of ultracapacitors appear well suited to electric vehicle applications, where they may supply the peak power more efficiently than the battery, and can prevent excessive over sizing of the battery pack due to peak power demands. Operation of ultracapacitors in battery electric vehicles is examined for possible improvements in system efficiency, vehicle driving range, battery pack lifetime, and potential reductions in system lifecycle cost. The lifecycle operation of these ultracapacitors is simulated using custom-built, dynamic simulation code constructed in Matlab. Despite apparent gains in system efficiency and driving range, the results strongly suggest that the inclusion of ultracapacitors in the electric vehicle does not make sense from a lifecycle cost perspective. Furthermore, a comparison with results from earlier work shows that this outcome is highly dependant upon the efficiency and cost of the battery under consideration. However, it is likely that the lifecycle cost benefits of ultracapacitors in these electric vehicles would be, at most, marginal and do not justify the additional capital costs and system complexity that would be incurred in the vehicle
Resumo:
The pulse power characteristics of ultracapacitors appear well suited to electric vehicle applications, where they may supply the peak power more efficiently than the battery, and can prevent excessive over sizing of the battery pack due to peak power demands. Operation of ultracapacitors in battery electric vehicles (BEVs) is examined for possible improvements in system efficiency, vehicle driving range, battery pack lifetime, and potential reductions in system lifecycle cost. The lifecycle operation of these ultracapacitors is simulated using a custom-built, dynamic simulation code constructed in Matlab. Despite apparent gains in system efficiency and driving range, the lifecycle cost benefits as simulated appear to be marginal, and are heavily influenced by the incremental cost of power components. However, additional factors are identified which, in reality, will drive ultracapacitors towards viability in electric vehicle applications.
Resumo:
This thesis is focused on the investigation of magnetic materials for high-power dcdc converters in hybrid and fuel cell vehicles and the development of an optimized high-power inductor for a multi-phase converter. The thesis introduces the power system architectures for hybrid and fuel cell vehicles. The requirements for power electronic converters are established and the dc-dc converter topologies of interest are introduced. A compact and efficient inductor is critical to reduce the overall cost, weight and volume of the dc-dc converter and optimize vehicle driving range and traction power. Firstly, materials suitable for a gapped CC-core inductor are analyzed and investigated. A novel inductor-design algorithm is developed and automated in order to compare and contrast the various magnetic materials over a range of frequencies and ripple ratios. The algorithm is developed for foil-wound inductors with gapped CC-cores in the low (10 kHz) to medium (30 kHz) frequency range and investigates the materials in a natural-convection-cooled environment. The practical effects of frequency, ripple, air-gap fringing, and thermal configuration are investigated next for the iron-based amorphous metal and 6.5 % silicon steel materials. A 2.5 kW converter is built to verify the optimum material selection and thermal configuration over the frequency range and ripple ratios of interest. Inductor size can increase in both of these laminated materials due to increased airgap fringing losses. Distributing the airgap is demonstrated to reduce the inductor losses and size but has practical limitations for iron-based amorphous metal cores. The effects of the manufacturing process are shown to degrade the iron-based amorphous metal multi-cut core loss. The experimental results also suggest that gap loss is not a significant consideration in these experiments. The predicted losses by the equation developed by Reuben Lee and cited by Colonel McLyman are significantly higher than the experimental results suggest. Iron-based amorphous metal has better preformance than 6.5 % silicon steel when a single cut core and natural-convection-cooling are used. Conduction cooling, rather than natural convection, can result in the highest power density inductor. The cooling for these laminated materials is very dependent on the direction of the lamination and the component mounting. Experimental results are produced showing the effects of lamination direction on the cooling path. A significant temperature reduction is demonstrated for conduction cooling versus natural-convection cooling. Iron-based amorphous metal and 6.5% silicon steel are competitive materials when conduction cooled. A novel inductor design algorithm is developed for foil-wound inductors with gapped CC-cores for conduction cooling of core and copper. Again, conduction cooling, rather than natural convection, is shown to reduce the size and weight of the inductor. The weight of the 6.5 % silicon steel inductor is reduced by around a factor of ten compared to natural-convection cooling due to the high thermal conductivity of the material. The conduction cooling algorithm is used to develop high-power custom inductors for use in a high power multi-phase boost converter. Finally, a high power digitally-controlled multi-phase boost converter system is designed and constructed to test the high-power inductors. The performance of the inductors is compared to the predictions used in the design process and very good correlation is achieved. The thesis results have been documented at IEEE APEC, PESC and IAS conferences in 2007 and at the IEEE EPE conference in 2008.
Resumo:
Gemstone Team CHIP
Resumo:
The specific energy of lithium-ion batteries (LIBs) is today 200 Wh/kg, a value not sufficient to power fully electric vehicles with a driving range of 400 km which requires a battery pack of 90 kWh. To deliver such energy the battery weight should be higher than 400 kg and the corresponding increase of vehicle mass would narrow the driving range to 280 km. Two main strategies are pursued to improve the energy of the rechargeable lithium batteries up to the transportation targets. The first is the increase of LIBs working voltage by using high-voltage cathode materials. The second is the increase of battery capacity by the development of a cell chemistry where oxygen redox reaction (ORR) occurs at the cathode and metal lithium is the anode (Li/O2 battery). This PhD work is focused on the development of high-voltage safe cathodes for LIBs, and on the investigation of the feasibility of Li/O2 battery operating with ionic liquid(IL)-based electrolytes. The use of LiMn1-xFexPO4 as high-voltage cathode material is discussed. Synthesis and electrochemical tests of three different phosphates, more safe cathode materials than transition metal oxides, are reported. The feasibility of Li/O2 battery operating in IL-based electrolytes is also discussed. Three aspects have been investigated: basic aspects of ORR, synthesis and characterization of porous carbons as positive electrode materials and study of limiting factors to the electrode capacity and cycle-life. Regarding LIBs, the findings on LiMnPO4 prepared by soluble precursors demonstrate that a good performing Mn-based olivine is viable without the coexistence of iron. Regarding Li/O2 battery, the oxygen diffusion coefficient and concentration values in different ILs were obtained. This work highlighted that the O2 mass transport limits the Li/O2 capacity at high currents; it gave indications on how to increase battery capacity by using a flow-cell and a porous carbon as cathode.
Resumo:
One of the main objectives of European Commission related to climate and energy is the well-known 20-20-20 targets to be achieved in 2020: Europe has to reduce greenhouse gas emissions of at least 20% below 1990 levels, 20% of EU energy consumption has to come from renewable resources and, finally, a 20% reduction in primary energy use compared with projected levels, has to be achieved by improving energy efficiency. In order to reach these objectives, it is necessary to reduce the overall emissions, mainly in transport (reducing CO2, NOx and other pollutants), and to increase the penetration of the intermittent renewable energy. A high deployment of battery electric (BEVs) and plug-in hybrid electric vehicles (PHEVs), with a low-cost source of energy storage, could help to achieve both targets. Hybrid electric vehicles (HEVs) use a combination of a conventional internal combustion engine (ICE) with one (or more) electric motor. There are different grades of hybridation from micro-hybrids with start-stop capability, mild hybrids (with kinetic energy recovery), medium hybrids (mild hybrids plus energy assist) and full hybrids (medium hybrids plus electric launch capability). These last types of vehicles use a typical battery capacity around 1-2 kWh. Plug in hybrid electric vehicles (PHEVs) use larger battery capacities to achieve limited electric-only driving range. These vehicles are charged by on-board electricity generation or either plugging into electric outlets. Typical battery capacity is around 10 kWh. Battery Electric Vehicles (BEVs) are only driven by electric power and their typical battery capacity is around 15-20 kWh. One type of PHEV, the Extended Range Electric Vehicle (EREV), operates as a BEV until its plug-in battery capacity is depleted; at which point its gasoline engine powers an electric generator to extend the vehicle's range. The charging of PHEVs (including EREVs) and BEVs will have different impacts to the electric grid, depending on the number of vehicles and the start time for charging. Initially, the lecture will start analyzing the electrical power requirements for charging PHEVs-BEVs in Flanders region (Belgium) under different charging scenarios. Secondly and based on an activity-based microsimulation mobility model, an efficient method to reduce this impact will be presented.
Resumo:
Drink driving is a major public health issue and this report examines the experiences of convicted offenders who participated in an established drink driving rehabilitation program Under the Limit (UTL). Course completers were surveyed at least three months after they had finished the 11-week UTL course. The aim of this study was to examine whether the UTL program reduced the level of alcohol consumption either directly as a result of participation in the UTL drink driving program or through increased use of community alcohol program by participants. The research involved a self-report outcome evaluation to determine whether the self-reported levels of alcohol use after the course had changed from the initial alcohol use reported by offenders. The findings are based on the responses of 30 drink-driving offenders who had completed the UTL program (response rate: 20%). While a process evaluation was proposed in the initial application, the low response rate meant that this follow up research was not feasible. The response rate was low for two reasons, it was difficult to: recruit participants who consented to follow up, and subsequently locate and survey those who had consented to involvement.
Resumo:
Objectives: As the population ages, more people will be wearing presbyopic vision corrections when driving. However, little is known about the impact of these vision corrections on driving performance. This study aimed to determine the subjective driving difficulties experienced when wearing a range of common presbyopic contact lens and spectacle corrections.----- Methods: A questionnaire was developed and piloted that included a series of items regarding difficulties experienced while driving under daytime and night-time conditions (rated on five-point and seven-point Likert scales). Participants included 255 presbyopic patients recruited through local optometry practices. Participants were categorized into five age-matched groups; including those wearing no vision correction for driving (n = 50), bifocal spectacles (n = 54), progressive spectacles (n = 50), monovision contact lenses (n = 53), and multifocal contact lenses (n = 48).----- Results: Overall, ratings of satisfaction during daytime driving were relatively high for all correction types. However, multifocal contact lens wearers were significantly less satisfied with aspects of their vision during night-time than daytime driving, particularly regarding disturbances from glare and haloes. Progressive spectacle lens wearers noticed more distortion of peripheral vision, whereas bifocal spectacle wearers reported more difficulties with tasks requiring changes of focus and those who wore no optical correction for driving reported problems with intermediate and near tasks. Overall, satisfaction was significantly higher for progressive spectacles than bifocal spectacles for driving.----- Conclusions: Subjective visual experiences of different presbyopic vision corrections when driving vary depending on the vision tasks and lighting level. Eye-care practitioners should be aware of the driving-related difficulties experienced with each vision correction type and the need to select corrective types that match the driving needs of their patients.
Resumo:
Presbyopia affects individuals from the age of 45 years onwards, resulting in difficulty in accurately focusing on near objects. There are many optical corrections available including spectacles or contact lenses that are designed to enable presbyopes to see clearly at both far and near distances. However, presbyopic vision corrections also disturb aspects of visual function under certain circumstances. The impact of these changes on activities of daily living such as driving are, however, poorly understood. Therefore, the aim of this study was to determine which aspects of driving performance might be affected by wearing different types of presbyopic vision corrections. In order to achieve this aim, three experiments were undertaken. The first experiment involved administration of a questionnaire to compare the subjective driving difficulties experienced when wearing a range of common presbyopic contact lens and spectacle corrections. The questionnaire was developed and piloted, and included a series of items regarding difficulties experienced while driving under day and night-time conditions. Two hundred and fifty five presbyopic patients responded to the questionnaire and were categorised into five groups, including those wearing no vision correction for driving (n = 50), bifocal spectacles (BIF, n = 54), progressive addition lenses spectacles (PAL, n = 50), monovision (MV, n = 53) and multifocal contact lenses (MTF CL, n = 48). Overall, ratings of satisfaction during daytime driving were relatively high for all correction types. However, MV and MTF CL wearers were significantly less satisfied with aspects of their vision during night-time than daytime driving, particularly with regard to disturbances from glare and haloes. Progressive addition lens wearers noticed more distortion of peripheral vision, while BIF wearers reported more difficulties with tasks requiring changes in focus and those who wore no vision correction for driving reported problems with intermediate and near tasks. Overall, the mean level of satisfaction for daytime driving was quite high for all of the groups (over 80%), with the BIF wearers being the least satisfied with their vision for driving. Conversely, at night, MTF CL wearers expressed the least satisfaction. Research into eye and head movements has become increasingly of interest in driving research as it provides a means of understanding how the driver responds to visual stimuli in traffic. Previous studies have found that wearing PAL can affect eye and head movement performance resulting in slower eye movement velocities and longer times to stabilize the gaze for fixation. These changes in eye and head movement patterns may have implications for driving safety, given that the visual tasks for driving include a range of dynamic search tasks. Therefore, the second study was designed to investigate the influence of different presbyopic corrections on driving-related eye and head movements under standardized laboratory-based conditions. Twenty presbyopes (mean age: 56.1 ± 5.7 years) who had no experience of wearing presbyopic vision corrections, apart from single vision reading spectacles, were recruited. Each participant wore five different types of vision correction: single vision distance lenses (SV), PAL, BIF, MV and MTF CL. For each visual condition, participants were required to view videotape recordings of traffic scenes, track a reference vehicle and identify a series of peripherally presented targets while their eye and head movements were recorded using the faceLAB® eye and head tracking system. Digital numerical display panels were also included as near visual stimuli (simulating the visual displays of a vehicle speedometer and radio). The results demonstrated that the path length of eye movements while viewing and responding to driving-related traffic scenes was significantly longer when wearing BIF and PAL than MV and MTF CL. The path length of head movements was greater with SV, BIF and PAL than MV and MTF CL. Target recognition was less accurate when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze, regardless of vision correction type. The third experiment aimed to investigate the real world driving performance of presbyopes while wearing different vision corrections measured on a closed-road circuit at night-time. Eye movements were recorded using the ASL Mobile Eye, eye tracking system (as the faceLAB® system proved to be impractical for use outside of the laboratory). Eleven participants (mean age: 57.25 ± 5.78 years) were fitted with four types of prescribed vision corrections (SV, PAL, MV and MTF CL). The measures of driving performance on the closed-road circuit included distance to sign recognition, near target recognition, peripheral light-emitting-diode (LED) recognition, low contrast road hazards recognition and avoidance, recognition of all the road signs, time to complete the course, and driving behaviours such as braking, accelerating, and cornering. The results demonstrated that driving performance at night was most affected by MTF CL compared to PAL, resulting in shorter distances to read signs, slower driving speeds, and longer times spent fixating road signs. Monovision resulted in worse performance in the task of distance to read a signs compared to SV and PAL. The SV condition resulted in significantly more errors made in interpreting information from in-vehicle devices, despite spending longer time fixating on these devices. Progressive addition lenses were ranked as the most preferred vision correction, while MTF CL were the least preferred vision correction for night-time driving. This thesis addressed the research question of how presbyopic vision corrections affect driving performance and the results of the three experiments demonstrated that the different types of presbyopic vision corrections (e.g. BIF, PAL, MV and MTF CL) can affect driving performance in different ways. Distance-related driving tasks showed reduced performance with MV and MTF CL, while tasks which involved viewing in-vehicle devices were significantly hampered by wearing SV corrections. Wearing spectacles such as SV, BIF and PAL induced greater eye and head movements in the simulated driving condition, however this did not directly translate to impaired performance on the closed- road circuit tasks. These findings are important for understanding the influence of presbyopic vision corrections on vision under real world driving conditions. They will also assist the eye care practitioner to understand and convey to patients the potential driving difficulties associated with wearing certain types of presbyopic vision corrections and accordingly to support them in the process of matching patients to optical corrections which meet their visual needs.
Resumo:
Driving on motorways has largely been reduced to a lane-keeping task with cruise control. Rapidly, drivers are likely to get bored with such a task and take their attention away from the road. This is of concern in terms of road safety – particularly for professional drivers - since inattention has been identified as one of the main contributing factors to road crashes and is estimated to be involved in 20 to 30% of these crashes. Furthermore, drivers are not aware that their vigilance level has decreased and that their driving performance is impaired. Intelligent Transportation System (ITS) intervention can be used as a countermeasure against vigilance decrement. This paper aims to identify a variety of metrics impacted during monotonous driving - ranging from vehicle data to physiological variables - and relate them to two monotonous factors namely the monotony of the road design (straightness) and the monotony of the environment (landscape, signage, traffic). Data are collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device (N=25 participants). The two monotonous factors are varied (high and low) leading to the use of four different driving scenarios (40 minutes each). We show with Generalised Linear Mixed Models that driver performance decreases faster when the road is monotonous. We also highlight that road monotony impairs a variety of driving performance and vigilance measures, ranging from speed, lateral position of the vehicle to physiological measurements such as heart rate variability, blink frequency and electrodermal activity. This study informs road designers of the importance of having a varied road environment. It also provides a range of metrics that can be used to detect in real-time the impairment of driving performance on monotonous roads. Such knowledge could result in the development of an in-vehicle device warning drivers at early signs of driving performance impairment on monotonous roads.
Resumo:
Driver simulators provide safe conditions to assess driver behaviour and provide controlled and repeatable environments for study. They are a promising research tool in terms of both providing safety and experimentally well controlled environments. There are wide ranges of driver simulators, from laptops to advanced technologies which are controlled by several computers in a real car mounted on platforms with six degrees of freedom of movement. The applicability of simulator-based research in a particular study needs to be considered before starting the study, to determine whether the use of a simulator is actually appropriate for the research. Given the wide range of driver simulators and their uses, it is important to know beforehand how closely the results from a driver simulator match results found in the real word. Comparison between drivers’ performance under real road conditions and in particular simulators is a fundamental part of validation. The important question is whether the results obtained in a simulator mirror real world results. In this paper, the results of the most recently conducted research into validity of simulators is presented.
Resumo:
Objective Research is beginning to provide an indication of the co-occurring substance abuse and mental health needs for the driving under the influence (DUI) population. This study aimed to examine the extent of such psychiatric problems among a large sample size of DUI offenders entering treatment in Texas. Methods This is a study of 36,373 past year DUI clients and 308,714 non-past year DUI clients admitted to Texas treatment programs between 2005 and 2008. Data were obtained from the State's administrative dataset. Results Analysis indicated that non-past year DUI clients were more likely to present with more severe illicit substance use problems, while past year DUI clients were more likely to have a primary problem with alcohol. Nevertheless, a cannabis use problem was also found to be significantly associated with DUI recidivism in the last year. In regards to mental health status, a major finding was that depression was the most common psychiatric condition reported by DUI clients, including those with more than one DUI offence in the past year. This cohort also reported elevated levels of Bipolar Disorder compared to the general population, and such a diagnosis was also associated with an increased likelihood of not completing treatment. Additionally, female clients were more likely to be diagnosed with mental health problems than males, as well as more likely to be placed on medications at admission and more likely to have problems with methamphetamine, cocaine, and opiates. Conclusions DUI offenders are at an increased risk of experiencing comorbid psychiatric disorders, and thus, corresponding treatment programs need to cater for a range of mental health concerns that are likely to affect recidivism rates.
Resumo:
A range of interventions are being implemented in Australia to apprehend and deter drug driving behaviour, in particular the recent implementation of random roadside drug testing procedures in Queensland. Given this countermeasure has a strong deterrence foundation, it is of interest to determine whether deterrence-based perceptual factors are influencing this offending behaviour or whether self-reported drug driving is heavily dependent upon illicit substance consumption levels and past offending behaviour. This study involves a sample of Queensland motorists (N = 898) who completed a self-report questionnaire that collected a range of information, including drug driving and drug consumption practices, conviction history, and perceptual deterrence factors. The aim was to examine what factors influence current drug driving behaviours. Analysis of the collected data revealed that approximately 20% of participants reported drug driving at least once in the last six months. Overall, there was considerable variability in the respondents' perceptions regarding the certainty, severity and swiftness of legal sanctions, although the largest proportion of the sample did not consider such sanctions to be certain, severe or swift. In regard to predicting those who intended to drug drive again in the future, a combination of perceptual and behavioural-based factors were associated with such intentions. However, a closer examination revealed that behaviours, rather than perceptions, proved to have a greater level of influence on the current sample's future intentions to offend. This paper further outlines the major findings of the study and highlights that multi-modal interventions are most likely required to reduce the prevalence of drug driving on public roads.