988 resultados para district heating pricing models
Resumo:
Kaukolämpöliiketoiminnan kehittämistarve korostuu jatkuvasti alan rakennemuutosten ja markkinoiden muutoksien seurauksena. Turku Energian tavoitteena on uudistaa ja kehittää kaukolämmön hinnoitteluaan vastaamaan energian tuotannon, jakelun, loppukäytön ja muihin alan muutoksiin. Tässä opinnäytetyössä tutkitaan kaukolämmön hinnoittelun optimointi ja kehittämistä nykyisessä sekä tulevaisuuden markkina- ja tuotantorakenteessa. Nykyisen hinnoittelumallin lisäksi tutkitaan vaihtoehtoisia tapoja hinnoitella myytävä kaukolämpöenergia, kuten vuodenaikojen mukaan määriteltävä muuttuva energianhinta. Työn kirjallisuusosassa esitellään kaukolämmön tuotanto, siirto ja jakelu sekä liiketoiminta Suomessa ja Turun seudulla. Tutkittavat hinnoittelumallit perustuvat todellisiin ja arvioituihin liiketoiminnan kustannuksiin, sekä esitettyihin laskentaperiaatteisiin. Turku Energian nykyistä perusmaksun hintatasoa tulee korottaa, jotta se vastaa lämmönhankinnan kiinteitä kustannuksia tarkemmin ja minimoi liiketoiminnan markkinariskiä. Nykyisen hinnoittelun verokomponentin kehittämisellä lisätään hinnoittelun läpinäkyvyyttä. Kausihinnoittelun avulla energianhinta noudattaa tuotannon kustannuksia vuoden aikana ja ohjaa asiakkaiden lämmönkulutusta nykyistä tarkemmin. Uusiutuvilla energianlähteillä tuotettua kaukolämpöä voidaan myydä erillisillä tuotteilla, joiden avulla liiketoiminnalle saadaan lisäarvoa.
Resumo:
The value of integrating a heat storage into a geothermal district heating system has been investigated. The behaviour of the system under a novel operational strategy has been simulated focusing on the energetic, economic and environmental effects of the new strategy of incorporation of the heat storage within the system. A typical geothermal district heating system consists of several production wells, a system of pipelines for the transportation of the hot water to end-users, one or more re-injection wells and peak-up devices (usually fossil-fuel boilers). Traditionally in these systems, the production wells change their production rate throughout the day according to heat demand, and if their maximum capacity is exceeded the peak-up devices are used to meet the balance of the heat demand. In this study, it is proposed to maintain a constant geothermal production and add heat storage into the network. Subsequently, hot water will be stored when heat demand is lower than the production and the stored hot water will be released into the system to cover the peak demands (or part of these). It is not intended to totally phase-out the peak-up devices, but to decrease their use, as these will often be installed anyway for back-up purposes. Both the integration of a heat storage in such a system as well as the novel operational strategy are the main novelties of this thesis. A robust algorithm for the sizing of these systems has been developed. The main inputs are the geothermal production data, the heat demand data throughout one year or more and the topology of the installation. The outputs are the sizing of the whole system, including the necessary number of production wells, the size of the heat storage and the dimensions of the pipelines amongst others. The results provide several useful insights into the initial design considerations for these systems, emphasizing particularly the importance of heat losses. Simulations are carried out for three different cases of sizing of the installation (small, medium and large) to examine the influence of system scale. In the second phase of work, two algorithms are developed which study in detail the operation of the installation throughout a random day and a whole year, respectively. The first algorithm can be a potentially powerful tool for the operators of the installation, who can know a priori how to operate the installation on a random day given the heat demand. The second algorithm is used to obtain the amount of electricity used by the pumps as well as the amount of fuel used by the peak-up boilers over a whole year. These comprise the main operational costs of the installation and are among the main inputs of the third part of the study. In the third part of the study, an integrated energetic, economic and environmental analysis of the studied installation is carried out together with a comparison with the traditional case. The results show that by implementing heat storage under the novel operational strategy, heat is generated more cheaply as all the financial indices improve, more geothermal energy is utilised and less fuel is used in the peak-up boilers, with subsequent environmental benefits, when compared to the traditional case. Furthermore, it is shown that the most attractive case of sizing is the large one, although the addition of the heat storage most greatly impacts the medium case of sizing. In other words, the geothermal component of the installation should be sized as large as possible. This analysis indicates that the proposed solution is beneficial from energetic, economic, and environmental perspectives. Therefore, it can be stated that the aim of this study is achieved in its full potential. Furthermore, the new models for the sizing, operation and economic/energetic/environmental analyses of these kind of systems can be used with few adaptations for real cases, making the practical applicability of this study evident. Having this study as a starting point, further work could include the integration of these systems with end-user demands, further analysis of component parts of the installation (such as the heat exchangers) and the integration of a heat pump to maximise utilisation of geothermal energy.
Resumo:
Recent literature has proved that many classical pricing models (Black and Scholes, Heston, etc.) and risk measures (V aR, CV aR, etc.) may lead to “pathological meaningless situations”, since traders can build sequences of portfolios whose risk leveltends to −infinity and whose expected return tends to +infinity, i.e., (risk = −infinity, return = +infinity). Such a sequence of strategies may be called “good deal”. This paper focuses on the risk measures V aR and CV aR and analyzes this caveat in a discrete time complete pricing model. Under quite general conditions the explicit expression of a good deal is given, and its sensitivity with respect to some possible measurement errors is provided too. We point out that a critical property is the absence of short sales. In such a case we first construct a “shadow riskless asset” (SRA) without short sales and then the good deal is given by borrowing more and more money so as to invest in the SRA. It is also shown that the SRA is interested by itself, even if there are short selling restrictions.
Resumo:
Spatial heterogeneity, spatial dependence and spatial scale constitute key features of spatial analysis of housing markets. However, the common practice of modelling spatial dependence as being generated by spatial interactions through a known spatial weights matrix is often not satisfactory. While existing estimators of spatial weights matrices are based on repeat sales or panel data, this paper takes this approach to a cross-section setting. Specifically, based on an a priori definition of housing submarkets and the assumption of a multifactor model, we develop maximum likelihood methodology to estimate hedonic models that facilitate understanding of both spatial heterogeneity and spatial interactions. The methodology, based on statistical orthogonal factor analysis, is applied to the urban housing market of Aveiro, Portugal at two different spatial scales.
Resumo:
Two main approaches are commonly used to empirically evaluate linear factor pricingmodels: regression and SDF methods, with centred and uncentred versions of the latter.We show that unlike standard two-step or iterated GMM procedures, single-step estimatorssuch as continuously updated GMM yield numerically identical values for prices of risk,pricing errors, Jensen s alphas and overidentifying restrictions tests irrespective of the modelvalidity. Therefore, there is arguably a single approach regardless of the factors being tradedor not, or the use of excess or gross returns. We illustrate our results by revisiting Lustigand Verdelhan s (2007) empirical analysis of currency returns.
Resumo:
En aquest article es pretén explicar breument la viabilitat de la futura gestió i utilització de la biomassa forestal de Bellver de Cerdanya mitjançant un district heating al futur barri del Pla de Tomet. Les particularitats per les quals aquest poble és ideal per a aquest projecte són que l'ajuntament és propietari de gairebé un 90% dels boscos situats en aquest municipi; i que alhora ja ha realitzat diverses instal·lacions que utilitzen la biomassa forestal per a calefacció i ACS. La situació econòmica de la comarca és bastant complicada, ja que s'ha basat en el sector turístic i la construcció, però ambdós no passen pel millor moment. El projecte serviria per donar un valor a la biomassa forestal que fins ara no s'ha donat, i alhora s'intenta buscar nous inputs econòmics per a la Cerdanya. En aquest treball també s'analitza quins haurien de ser els futurs tractaments que s'haurien d'aplicar a la forest, tenint en compte les activitats que es realitzen actualment, i evitant en tot moment possibles efectes negatius, com podria ser la sobreexplotació. També es dedica una part del projecte a explicar els sistemes per obtenir i gestionar de forma correcta la biomassa. A continuació es tracta la part més tècnica, realitzant una estimació del possible futur consum energètic del barri del Pla de Tomet, encara no construït; i decidint quins sistema de calderes seria el més adequat, el tipus d’emmagatzematge més apropiat i els passos a seguir per millorar el rendiment del procés de la gestió i extracció de la biomassa. Seguint tots aquests passos s'arriba a la conclusió que aprofitar la biomassa forestal és millor solució que utilitzar combustibles fòssils. A part dels obvis beneficis medi ambientals, també és millor a nivell econòmic, tant pels futurs veïns com per l'ajuntament.
Resumo:
Tämän tutkielman tavoitteena on selvittää mitkä riskitekijät vaikuttavat osakkeiden tuottoihin. Arvopapereina käytetään kuutta portfoliota, jotka ovat jaoteltu markkina-arvon mukaan. Aikaperiodi on vuoden 1987 alusta vuoden 2004 loppuun. Malleina käytetään pääomamarkkinoiden hinnoittelumallia, arbitraasihinnoitteluteoriaa sekä kulutuspohjaista pääomamarkkinoiden hinnoittelumallia. Riskifaktoreina kahteen ensimmäiseen malliin käytetään markkinariskiä sekä makrotaloudellisia riskitekijöitä. Kulutuspohjaiseen pääomamarkkinoiden hinnoinoittelumallissa keskitytään estimoimaan kuluttajien riskitottumuksia sekä diskonttaustekijää, jolla kuluttaja arvostavat tulevaisuuden kulutusta. Tämä työ esittelee momenttiteorian, jolla pystymme estimoimaan lineaarisia sekä epälineaarisia yhtälöitä. Käytämme tätä menetelmää testaamissamme malleissa. Yhteenvetona tuloksista voidaan sanoa, että markkinabeeta onedelleen tärkein riskitekijä, mutta löydämme myös tukea makrotaloudellisille riskitekijöille. Kulutuspohjainen mallimme toimii melko hyvin antaen teoreettisesti hyväksyttäviä arvoja.
Resumo:
This thesis examines whether global, local and exchange risks are priced in Scandinavian countries’ equity markets by using conditional international asset pricing models. The employed international asset pricing models are the world capital asset pricing model, the international asset pricing model augmented with the currency risk, and the partially segmented model augmented with the currency risk. Moreover, this research traces estimated equity risk premiums for the Scandinavian countries. The empirical part of the study is performed using generalized method of moments approach. Monthly observations from February 1994 to June 2007 are used. Investors’ conditional expectations are modeled using several instrumental variables. In order to keep system parsimonious the prices of risk are assumed to be constant whereas expected returns and conditional covariances vary over time. The empirical findings of this thesis suggest that the prices of global and local market risk are priced in the Scandinavian countries. This indicates that the Scandinavian countries are mildly segmented from the global markets. Furthermore, the results show that the exchange risk is priced in the Danish and Swedish stock markets when the partially segmented model is augmented with the currency risk factor.
Resumo:
A district heating system comprises production facilities, a distribution network, and heat consumers. The utilization of new energy metering and reading system (AMR) is increasing constantly in district heating systems. This heuristic study shows how the AMR system can be exploited in finding optimization opportunities in district heating system. In this study, the district heating system is mainly considered from the viewpoint of operational optimization. The focus is on the core processes, heat production and distribution. Three objectives were set to this study. The first one was to examine general optimization opportunities in district heating systems. Second, to figure out the benefits of AMR for general optimization opportunities. Finally, to define a methodology for process improvement endeavors. This study shows, through a case study, the usefulness of AMR in specifying current deficiencies in a district heating system. Based on a literature review, the methodology for the improvement of business processes is presented. Additionally, some issues related to future competitiveness of district heating are concerned. As a conclusion, some optimization objectives are considered more desirable than others. Study shows that AMR is useful in the specification of optimization targets in the district heating system. Further steps in optimization process were not examined in detail. That would seem to be interesting topic for further studies.
Resumo:
The purpose of this Thesis is to find the most optimal heat recovery solution for Wärtsilä’s dynamic district heating power plant considering Germany energy markets as in Germany government pays subsidies for CHP plants in order to increase its share of domestic power production to 25 % by 2020. Different heat recovery connections have been simulated dozens to be able to determine the most efficient heat recovery connections. The purpose is also to study feasibility of different heat recovery connections in the dynamic district heating power plant in the Germany markets thus taking into consideration the day ahead electricity prices, district heating network temperatures and CHP subsidies accordingly. The auxiliary cooling, dynamical operation and cost efficiency of the power plant is also investigated.
Resumo:
The growing population in cities increases the energy demand and affects the environment by increasing carbon emissions. Information and communications technology solutions which enable energy optimization are needed to address this growing energy demand in cities and to reduce carbon emissions. District heating systems optimize the energy production by reusing waste energy with combined heat and power plants. Forecasting the heat load demand in residential buildings assists in optimizing energy production and consumption in a district heating system. However, the presence of a large number of factors such as weather forecast, district heating operational parameters and user behavioural parameters, make heat load forecasting a challenging task. This thesis proposes a probabilistic machine learning model using a Naive Bayes classifier, to forecast the hourly heat load demand for three residential buildings in the city of Skellefteå, Sweden over a period of winter and spring seasons. The district heating data collected from the sensors equipped at the residential buildings in Skellefteå, is utilized to build the Bayesian network to forecast the heat load demand for horizons of 1, 2, 3, 6 and 24 hours. The proposed model is validated by using four cases to study the influence of various parameters on the heat load forecast by carrying out trace driven analysis in Weka and GeNIe. Results show that current heat load consumption and outdoor temperature forecast are the two parameters with most influence on the heat load forecast. The proposed model achieves average accuracies of 81.23 % and 76.74 % for a forecast horizon of 1 hour in the three buildings for winter and spring seasons respectively. The model also achieves an average accuracy of 77.97 % for three buildings across both seasons for the forecast horizon of 1 hour by utilizing only 10 % of the training data. The results indicate that even a simple model like Naive Bayes classifier can forecast the heat load demand by utilizing less training data.
Resumo:
The purpose of this Master´s Thesis is to develop asset management and its practices in case company. District heating and cooling systems operated by case company around Finland, Sweden, Poland and the Baltics form an enormous-sized asset base where some parts are starting to reach their end of life-cycles. Large-sized asset renewal actions are under discussion and maintenance spending is increasing. Financially justified decisions in changing business environment are needed. Asset management is one of the most important concepts for production organization which operates with capital-intensive production assets. Organizations profitability is highly dependent on assets´ performance. Such assets, like district heating and cooling systems, should be utilized as efficiently as possible within their life-cycles but also maintained and renewed optimally. In this qualitative thesis, empirical interview study was conducted to describe the current situation on how the assets are managed in the case company and to examine the readiness to implement a new, risk-based solution. Asset management revealed to be a very well-known concept. From proposed risk-based asset management point of view, several key observations were made. It was seen as a suitable solution, but further development will be needed. Based on the need and findings, several key processes and frameworks were created and also tested with a case study. Assets` condition monitoring should be improved, which would have a positive impact on event probability assessment. Risk acceptance is also a thing to be discussed further. When the evaluation becomes fluent in single investment cases, portfolio-level expansion should be considered and started. As a result, thesis proposes a solution how risk-based asset management could be performed practically in a capital-intensive case company in order to optimize the maintenance spending in a long run. Created practical framework is made universal: similar principles can be applied into multiple cases in case company but also in other energy companies. Risk-based asset management`s benefits could be utilized best in portfolio-level optimization where the capital would be invested to the most important objects from total risk point of view. Eventually, such approach would allow case company to optimize capital spending in a situation where funds are not adequate to cover all the mandatory needs and prioritization between the investment alternatives will truly be needed.
Asymmetry Risk, State Variables and Stochastic Discount Factor Specification in Asset Pricing Models
Resumo:
Rapport de recherche