894 resultados para distributed feedback laser
Resumo:
High power bandwidth-limited picosecond pulses with peak powers in excess of 200 mW have been generated using multi-contact distributed feedback laser diodes for the first time. The pulses have widths typically less than 10 ps, time-bandwidth products of as little as 0·24, and can be generated on demand at generator limited repetition rates of up to 140 MHz.
Resumo:
A distributed feedback laser with the sampled grating has been designed and fabricated. The typical threshold current of the sampled grating based DFB laser is 32 mA, and the output power is about 10mW at the injected current of 100 mA. The lasing wavelength is 1.5564 mu m, which is the -1(st) order mode of the sampled grating.
Resumo:
A new method for fabricating electroabsorption modulator integrated with a distributed feedback laser (EML) was proposed. With the method we fabricated a selective area growth double stack active layer EML (SAG-DSAL-EML). Through comparing with other fabrication methods of EMLs, the characters and the merits of the new method presented in this paper were discussed.
Resumo:
Usually GaAs/AlGaAs is utilized as an active layer material in laser diodes operating in the spectral range of 800 850 nm. In this work, in addition to a traditional unstrained GaAs/AlGaAs distributed feedback (DFB) laser diode, a compressively strained InGaAlAs/AlGaAs DFB laser diode is numerically investigated in characteristic. The simulation results show that the compressively strained DFB laser diode has a lower transparency carrier density, higher gain, lower Auger recombination rate, and higher stimulated recombination rate, which lead to better a device performance, than the traditional unstrained GaAs/AlGaAs DFB laser diode.
Resumo:
Using non-identical quantum wells as the active material, a new distributed-feed back laser is fabricated with period varied Bragg grating. The full width at half maximum of 115 nm is observed in the amplified spontaneous emission spectrum of this material, which is flatter and wider than that of the identical quantum wells. Two wavelengths of 1.51 mu m and 1.53 mu m are realized under different work conditions. The side-mode suppression ratios of both wavelengths reach 40 dB. This device can be used as the light source of coarse wavelength division multiplexer communication systems.
Resumo:
In this work, a novel light source of tandem InGaAsP/InGaAsP multiple quantum well electroabsoption modulator( EAM ) monolithically integrated with distributed feedback laser is fabricated by ultra-low-pressure ( 22 x 10(2) Pa ) selective area growth metal-organic chemical vapor diposition technique. Superior device performances have been obtained, such as low threshold current of 19 mA, output light power of 4.5 mW, and over 20 dB extinction ratio at 5 V applied voltage when coupled into a single mode fiber. Over 10 GHz 3dB bandwidth in EAM part is developed with a driving voltage of 2 V. Using this sinusoidal voltage driven integrated device, 10 GHz repetition rate pulse with an actual width of 13.7 ps without any compression elements is obtained due to the gate operation effect of tandem EAMs.
Resumo:
A InGaAsP/InP self-aligned, native oxidized buried heterostructure (BH) distributed feedback (DFB) laser is proposed. It is as easy to process as the ridge waveguide DFB laser and has superior performance. The current aperture can be easily controlled without selective regrowth. The laser exhibits a low threshold of 5.0 mA with 36 dB side mode suppression ratio at the emission wavelength of 1.562 mu m. It emits in a single lobe with full width at half maximum angles of 33.6 degrees and 42.6 degrees for the lateral and vertical fields, respectively. Its beam is more circular than that of the as-grown BH laser because the lower refractive index of oxide compared to the as-grown layer and results in a larger lateral optical confinement. Its characteristic temperature (T-0) is 50 K at room temperature but increases in value at the higher temperature range. (C) 2000 American Institute of Physics. [S0003-6951(00)00812-3].
Resumo:
A 1.3-mu m AlGaInAs/InP buried heterostructure (BH) stripe distributed feedback laser with a novel AlInAs/InP complex-coupled grating grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD) is proposed and demonstrated. A high characteristic temperature (T-0 = 90K between 20-80 degrees C) and temperature-insensitive slope efficiency (0.25 dB drop from 20 to 80 degrees C) in 1.3 mu m AlGaInAs/InP DFB lasers was obtained by introducing AI(Ga)InAs graded-index separate-confinement heterostructure (GRINSCH) layers and a strained-compensated (SC) multi-quantum well (MQW).
Resumo:
High performance InGaAsP/InGaAsP strained compensated multiple-quantum-well (MQW) electroabsorption modulators (EAM) monolithically integrated with a DFB laser diode have been designed and realized by ultra low metal-organic vapor phase epitaxy (MOVPE) based on a novel butt joint scheme. The optimization thickness of upper SCH layer for DFB and EAM was obtained of the proposed MQW structure of the EAM through numerical simulation and experiment. The device containing 250(mu m) DFB and 170(mu m) EAM shows good material quality and exhibits a threshold current of 17mA, an extinction ratio of higher than 30 dB and a very high modulation efficiency (12dB/V) from 0V to 1V. By adopting a high-mesa ridge waveguide and buried polyimide, the capacitance of the modulator is reduced to about 0.30 pF corresponding to a 3dB bandwidth more than 20GHz.
Resumo:
By etching a second-order grating directly into the Al-free optical waveguide region of a ridgewaveguide(RW) AlGaInAs/AlGaAs distributed feedback(DFB) laser diode,a front facet output power of 30mW is obtained at about 820nm with a single longitudinal mode. The Al-free grating surface permits the re-growth of a high-quality cladding layer that yields excellent device performance. The threshold current of these laser diodes is 57mA,and the slope efficiency is about 0.32mW/mA.
Resumo:
The compressively strained InGaAs/InGaAsP quantum well distributed feedback laser with ridge-wave- guide is fabricated at 1.74μm. It is grown by low-pressure metal organic chemical vapor deposition(MOCVD). A strain buffer layer is used to avoid indium segregation. The threshold current of the device uncoated with length of 300μm is 11.5mA. The maximum output power is 14mW at 100mA. A side mode suppression ratio of 35.5dB is obtained.