909 resultados para carbon fiber electrode
Resumo:
An electrochemical detector which was constracted by using a carbon fibre electrode in a flow-through cell was connected with a liquid chromatographic column. Thus a sensitive,
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, we report the construction and application of a sol-gel derived carbon composite electrode (CCE) as an amperometric detector for capillary electrophoresis. The electrochemical properties were characterized and compared with those of conventional carbon fiber and carbon paste electrode (CPE). Experimental results show that peak-to-peak noise of CCE was about 20% of CPE and electrode capacitance was comparatively low. When applied to the detection of dopamine and epinephrine, the optimal detection potential for CCE was 0.1 V lower than CPE under the same separation conditions; CCE with diameter of 75 and 100 mum could achieve a low detection limit of 3.10(-8) and 6.10(-8) M for the detection of epinephrine, which approaching that of the 33-mum diameter carbon fiber electrode. Also, the linearity for epinephrine at CCE was more than two orders of magnitude, which was slightly wider than that of carbon fiber electrode. Applications to real sample analysis were tested by the determination of betahistine dihydrochloride in tablets and human urine. Using CCE with diameter less than or equal to100 mum as an amperometric detector after capillary electrophoresis separation, a low detection limit and a wide linear range combined with excellent reproducibility were obtained. This CCE possesses of many advantages, namely, convenience, ease of fabrication, low cost and high stability.
Resumo:
Carbon fiber ultramicroelectrodes are shown to be suitable for adsorptive stripping potentiometric measurements of trace DNA and RNA. The origin of the carbon fiber has a profound effect upon its suitability for trace analysis of nucleic acids, with the 'Aesar' materials performing most favorably. The resulting ultramicroelectrodes offer effective adsorptive accumulation of DNA and RNA from unstirred microliter-volume solutions, and are shown to be useful in adsorptive stripping transfer experiments. The influence of the surface pretreatment and accumulation conditions is described, along with the analytical-performance characteristics. The detection limits are 6, 15 and 40 mu g/l tRNA, ssDNA and dsDNA, respectively (5 min accumulation). (C) 1998 Elsevier B.V. S.A.
Resumo:
Aristolochic acids (AAs) are the main bioactive ingredients in the most of Aristolochia plants, which are used to make dietary supplements, slimming pills and Traditional Chinese Medicines (TCMs). Excessive ingestion of AAs can lead to serious nephropathy. Therefore, quantitative analysis and quality control for the plants containing AAs is of great importance. In this paper, capillary electrophoresis (CE) with electrochemical detection (ED) at a 33 mu m carbon fiber microdisk electrode (CFE) has been applied to detect AA-I and AA-II in Aristolochia plants. Under the optimum conditions: detection potential at 1.20 V, 2.0 x 10(-2) mol L-1 phosphate buffer solution (PBS) (pH 10.0), injection time 25 s at a height of 17 cm and separation voltage at 12.5 kV, the AA-I and AA-II were baseline separated within 5 min. Low detection limits for AA-I and AA-II were 4.0 x 10(-8) mol L-1 and 1.0 x 10(-7) mol L-1, respectively. Wide linear ranges were from 4.0 x 10(-8) mol L-1 to 1.9 x 10(-5) mol L-1 and 1.0 X 10(-7) mol L-1 to 5.0 x 10(-5) mol L-1 for AA-I and AA-II, respectively. The proposed method has been successfully applied to analyze AAs contents in plant extracts. The results indicated that the contents of AAs in each part of Aristolochia debilis Sieb. Et Zucc.
Resumo:
A sol-gel derived ceramic-carbon composite electrode is used for fabrication of a new type of optical fiber biosensor based on luminol electrochemiluminescence (ECL). The electrode consists of graphite powder impregnated with glucose oxidase in a silicate network. In this configuration, the immobilized enzyme oxidizes glucose to liberate hydrogen peroxide and graphite powder provides percolation conductivity for triggering the ECL between luminol and the liberated hydrogen peroxide. Both of the reactions occur simultaneously on the surface of the composite electrode, thereby the response of the biosensor is very fast. The peak intensity was achieved within only 20 s after glucose injection. In addition, the electrode could be renewed by a simple mechanical polishing step in case of contamination or fouling. The linear range extends from 0.01 to 10 mM for glucose and the detection limit is about 8.16 muM. The renewal repeatability and stability of the biosensor are also investigated in detail.
Resumo:
A highly dispersed ultramicro palladium-particle modified carbon fiber microdisk array electrode (Pd-CFE) was employed for capillary electrophoresis-electrochemical (CEEC) detection of hydroxylamine (HA). The Pd particles obtained were in the nanometer scale, had a high electrocatalytic activity towards HA and exhibited good reproducibility and stability. A linear relationship between the current and the analyte concentration was found between 5 x 10(-6) and 1 x 10(-3) mol/l of HA with a correlation coefficient of 0.9992. The detection limit was 5 x 10(-8) mol/l. The applicability of the method for the determination of HA in river water and waste water was investigated.
Resumo:
A wall-jet cell incorporating a carbon fibre array ring/glassy-carbon disk electrode has been constructed, and characterized by the cyclic voltammetry and flow-injection techniques. The ring (composed of several microdisks) and glassy-carbon disk electrode, can be used separately for different purposes, e.g., detection in solution without a supporting electrolyte, collection/shielding detection with dual-electrode and voltammetric/amperometric detection with series dual-electrode. The electrode shows better collection and shielding effects than usual ring-disk electrode in quiescent solution and the series dual-electrode in a thin-layer flow-through cell. The detection limit at the ring electrode is comparable with that at a conventional-size electrode, and has been used in the mobile phase without a supporting electrolyte, proving to be a promising detector for normal-phase liquid chromatography.
Resumo:
A new method for immobilization of a chemiluminescent reagent is presented. It is based on immobilizing hematin, a catalyst for luminol reaction, in the bulk of a carbon paste electrode. Bulk-immobilization allows renewal of the surface by simple polishing or cutting to expose anew and fully active surface in the case of fouling or deactivation by other means. By using a hematin-modified carbon paste electrode, the applied potential shifted negatively compared with that of unmodified carbon paste electrode or a glassy carbon electrode. The shift in potential changed the reaction processes and effectively stabilized the chemiluminescent signal during successive measurements. Under this condition, the signal was stable during 3 hours of continuous operation. The log-log plots of the emitted light intensity vs. luminol concentration and hydrogen peroxide concentration were linear over the region 10(-8)-10(-3) mol L-1 with a correlation coefficient of 0.999 and 3.9 x 10(-6)-10(-3) mol L-1 with a correlation coefficient of 0.994, respectively. Application of this method for other chemiluminescent and bioluminescent systems is suggested.
Resumo:
A rapid and sensitive detection method for the determination of 5-fluorouracil(5-FU) in real samples such as human urine and bovine serum albumin (BSA) was described. A carbon fiber microdisk electrode was used to perform end-column amperometric detection in capillary zone electrophoresis. The detection limit was as low as 2.5x10(-7) M and the wider linear range for the concentration was between 5x10(-6) and 1x10(-4) M with a correlation coefficient of 0.995.
Resumo:
Capillary electrophoresis (CE)/electrochemical detection (EC) for the simultaneous determination of hydrazine and isoniazid has been developed. The electrochemical method uses a novel modified electrode dispersed with ultrafine platinum particles on the surface of a 30 mu m carbon fiber microelectrode. The unique characteristic of the Pt-particles modified carbon fiber microelectrode is its excellent stability. The current measurement for hydrazine is more sensitive than that of isoniazid. Selective determination of trace amount of free hydrazine in isoniazid and its formulation can be achieved at applied potential of 0.5 V.
Resumo:
The redox behaviours of 12-molybdophosphoric acid (12-MPA) and 12-molybdosilicic acid (12-MSA) in aqueous acid media are characterized at the carbon fiber (CF) microelectrode. The preparation of CF microelectrode modified with 12-MPA or 12-MSA monolayer and the oxidation-reduction properties of the modified electrode in aqueous acid media or 50% (v/v) water-organic media containing some inorganic acids are studied by cyclic voltammetry. 12-MPA or 12-MSA monolayer modified CF microelectrode with high stability and redox reversibility in aqueous acidic media can be prepared by simple dip coating. The cyclic voltammograms of 12-MPA and 12-MSA and their modified CF microelectrodes in aqueous acid solution exhibit three two-electron reversible waves with the same half-wave potentials, which defines that the species adsorbed on the CF electrode surface are 12-MPA and 12-MSA themselves. The acidity of electrolyte solution, the organic solvents in the electrolyte solution, and the scanning potential range strongly influence on the redox behaviours and stability of 12-MPA or 12-MSA monolayer modified electrodes. On the other hand, the catalytic effects of the 12-MPA and 12-MSA and chlorate anions in aqueous acidic solution on the electrode reaction processes of 12-MPA or 12-MSA are described.
Resumo:
A novel modified electrode dispersed with ultrafine platinum particles on the surface of a 30-mu m carbon fibre microelectrode was investigated as an amperometric detector in capillary zone electrophoresis (CEEC) for determining hydrazines. The unique cha