35 resultados para ZINCBLENDE
Resumo:
A molecular model for substitutional defects in a zincblende lattice has been worked out. The infrared absorption due to A1 in InSb and Li in GaAs are interpreted on the basis of this model.
Resumo:
We report a comparative study of the electronic properties of nominally identical nanowire field-effect transistor (NW-FET) devices produced using 50 nm diameter InAs nanowires that differ only in phase: ZB on the one hand, and WZ on the other. We find much higher current densities in the ZB NW-FETs, and on/off ratios of up to 100. © 2010 IEEE.
Resumo:
We use polarization-resolved and temperature-dependent photoluminescence of single zincblende (ZB) (cubic) and wurtzite (WZ) (hexagonal) InP nanowires to probe differences in selection rules and bandgaps between these two semiconductor nanostructures. The WZ nanowires exhibit a bandgap 80 meV higher in energy than the ZB nanowires. The temperature dependence of the PL is similar but not identical for the WZ and ZB nanowires. We find that ZB nanowires exhibit strong polarization parallel to the nanowire axis, while the WZ nanowires exhibit polarized emission perpendicular to the nanowire axis. This behavior is interpreted in terms of the different selection rules for WZ and ZB crystal structures. © 2007 American Institute of Physics.
Resumo:
We compare the electronic characteristics of nanowire field-effect transistors made using single pure wurtzite and pure zincblende InAs nanowires grown from identical catalyst particles. We compare the transfer characteristics and field-effect mobility versus temperature for these devices to better understand how differences in InAs phase govern the electronic properties of nanowire transistors. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
We have fabricated a set of samples of zincblende Mn-rich Mn(Ga)As clusters embedded in GaAs matrices by annealing (Ga,Mn)As films with different nominal Mn content at 650 degrees C. For the samples with Mn content no more than 4.5%, the Curie temperature reaches nearly 360 K. However, when Mn content is higher than 5.4%, the samples exhibit a spin-glass-like behavior. We suggest that these different magnetic properties are caused by the competing result of dipolar and Ruderman-Kittel-Kasuya-Yosida interaction among clusters. The low-temperature spin dynamic behavior, especially the relaxation effect, shows the extreme creeping effect which is reflected by the time constant tau of similar to 10(11) s at 10 K. We explain this phenomenon by the hierarchical model based on the mean-field approach. We also explain the memory effect by the relationship between the correlation function and the susceptibility.
Resumo:
Zincblende Mn-rich Mn(Ga)As nanoclusters embedded in GaAs matrices are fabricated by in situ postgrowth annealing diluted magnetic semiconductor (Ga,Mn)As films with Mn concentration ranging from 2.6% to 8% at 650 degrees C. Magnetization measurements show that memory effect and slow magnetic relaxation, the typical characteristics of the spin-glass-like phase, occur below the blocking temperature of 45 K in samples with high Mn concentration, while for samples with low Mn concentration, ferromagnetic order remains up to 360 K. The behavior of low-temperature spin dynamics can be explained by the hierarchical model. (c) 2007 American Institute of Physics.
Resumo:
Zincblende CrSb (zb-CrSb) layers with room-temperature ferromagnetism have been grown on relaxed and strained (In,Ga)As buffer layers epitaxially prepared on (001) GaAs substrates by molecular-beam epitaxy. The structural characterizations of CrSb layers fabricated under the two cases are studied by using synchrotron grazing incidence x-ray diffraction (GID). The results of GID experiments indicate that no sign of second phase exists in all the zb-CrSb layers. Superconducting quantum interference device measurements demonstrate that the thickness of zb-CrSb layers grown on both relaxed and strained (In,Ga)As buffer layers can be increased to similar to 12 monolayers (similar to 3.6nm), compared to similar to 3 monolayers (similar to 1nm) on GaAs directly.
Resumo:
Intervalley GAMMA - X deformation potential constants (IVDP's) have been calculated by first principle pseudopotential method for the III-V zincblende semiconductors AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs and InSb. As a prototype crystal we have also carried out calculations on Si. When comparing the calculated IVDP's of LA phonon for GaP, InP and InAs and LO phonon for AlAs, AlSb, GaAs, GaSb and InSb with a previous calculation by EPM in rigid approximation, good agreements are found. However, our ab initio pseudopotential results of LA phonon for AlAs, AlSb, GaAs, GaSb and InSb and LO phonon for GaP, InP and InAs are about one order of magnitude smaller than those obtained by EPM calculations, which indicate that the electron redistributions upon the phonon deformations may be important in affecting GAMMA - X intervalley shatterings for these phonon modes when the anions are being displaced. In our calculations the phonon modes of LA and LO at X point have been evaluated in frozen phonon approximation. We have obtained, at the same time, the LAX and LOX phonon frequencies for these materials from total energy calculations. The calculated phonon frequencies agree very well with experimental values for these semiconductors.
Resumo:
Intervalley GAMMA-X deformation-potential constants (IVDP's) have been calculated by use of a first-principles pseudopotential method for the III-V zinc-blende semiconductors AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb. When the calculated IVDP's of LA phonons for GaP, InP, and InAs and of LO phonons for AlAs, AlSb, GaAs, GaSb, and InSb are compared with results of a previous calculation that used the empirical pseudopotential method (EPM) and a rigid-ion approximation, good agreement is found. However, our ab initio pseudopotential results on IVDP's of LA phonons for AlAs, AlSb, GaAs, GaSb, and InSb and of LO phonons for GaP, InP, and InAs are about one order of magnitude smaller than those obtained by use of EPM calculations, indicating that the electron redistribution accompanying crystal-lattice deformation has a significant effect on GAMMA-X intervalley scattering for these phonon modes when the anions are being displaced. In our calculations the LA- and LO-phonon modes at the X point have been evaluated in the frozen-phonon approximation. We have also obtained the LAX- and LOX-phonon frequencies for these materials from total-energy calculations, which agree very well with experimental values for these semiconductors. We have also calculated GAMMA-X hole-phonon scattering matrix elements for the top valence bands in these nine semiconductors, from which the GAMMA-X IVDP's of the top valence bands for the longitudinal phonons and transverse phonons are evaluated, respectively.
Resumo:
Longitudinal zone boundary X phonon frequencies have been calculated by a first principles pseudopotential method for III-V zincblende semiconductors AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs and InSb. The phonon frequencies have been evaluated from total energy calculations in the frozen phonon approximation. The calculated phonon frequencies agree very well with the experimental values.
Resumo:
The electronic structure of Mg impurity in zincblende (c-)GaN is investigated by using the ab initio full potential linear-augmented plane-wave method and the local density-functional approximation. Full geometry optimization calculations, including nearest and next-nearest neighbor displacements, are performed for the impurity in the neutral and negatively charged states. A value of 190 ± 10 meV was obtained for the Franck-Condon shift to the thermal energy, which is in good agreement with that observed in recent low temperature photoluminescence and Hall-effect measurements. We conclude that the nearest and next-nearest neighbors of the Mg impurity replacing Ga in C-GaN undergo outward relaxations which play an important role in the determination of the center acceptor energies.
Resumo:
We report on first-order micro-Raman and resonant micro-Raman scattering measurements on c-InxGa1-xN (0 ≤ x ≤ 0.31) epitaxial layers. We have found that both, the transverse-optical (TO) and longitudinal-optical (LO) phonons of InxGa1-xN alloy exhibit a one-mode-type behavior. Their frequencies at Γ lie on straight lines connecting the corresponding values obtained for the c-GaN and c-InN binary compounds. Evidence for phase separation is shown in the sample with the alloy composition x = 0.31. The Raman spectra, with excitation energy close to 2.4 eV, show an enhanced additional peak, with frequency between the values found for the LO and TO phonon modes of the C-In0.31Ga0.69N epitaxial layer. We ascribed this peak to the LO phonon mode of a minority phase with In content of ≈0.80.
Resumo:
The calculation of the energy spectrum and absorption coefficients of quantum dot nanostructured intermediate band solar cells using the Empiric K·P Hamiltonian method and its agreement with experimental data are summarized. The well established Luttinger Kohn Hamiltonian modified by Pikus and Bir for strained material, such as quantum dot arrays, is presented using a simplified strain field that allows for square band offsets. The energy spectrum and absorption coefficients are calculated with this new Hamiltonian. With the approximations made the energy spectrum results to be exactly the same but the absorption coefficient fits experiments less accurately. The computer time using the latter Hamiltonian is much longer than the former one.