836 resultados para TORSION THEORIES
Resumo:
We begin a study of torsion theories for representations of finitely generated algebras U over a field containing a finitely generated commutative Harish-Chandra subalgebra Gamma. This is an important class of associative algebras, which includes all finite W-algebras of type A over an algebraically closed field of characteristic zero, in particular, the universal enveloping algebra of gl(n) (or sl(n)) for all n. We show that any Gamma-torsion theory defined by the coheight of the prime ideals of Gamma is liftable to U. Moreover, for any simple U-module M, all associated prime ideals of M in Spec Gamma have the same coheight. Hence, the coheight of these associated prime ideals is an invariant of a given simple U-module. This implies the stratification of the category of U-modules controlled by the coheight of the associated prime ideals of Gamma. Our approach can be viewed as a generalization of the classical paper by Block (1981) [4]; it allows, in particular, to study representations of gl(n) beyond the classical category of weight or generalized weight modules. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Let A be an Artin algebra and mod A be the category of finitely generated right A-modules. We prove that an additive full subcategory C of mod A closed under predecessors is contravariantly finite if and only if its right Ext-orthogonal is covariantly finite, or if and only if the Ext-injectives in C define a cotilting module (over the support algebra of C) or, equivalently, if and only if C is the support of the representable functors given by the Ext-injectives. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Table of Contents
1 | Introduction | 1 |
1.1 | What is an Adiabatic Shear Band? | 1 |
1.2 | The Importance of Adiabatic Shear Bands | 6 |
1.3 | Where Adiabatic Shear Bands Occur | 10 |
1.4 | Historical Aspects of Shear Bands | 11 |
1.5 | Adiabatic Shear Bands and Fracture Maps | 14 |
1.6 | Scope of the Book | 20 |
2 | Characteristic Aspects of Adiabatic Shear Bands | 24 |
2.1 | General Features | 24 |
2.2 | Deformed Bands | 27 |
2.3 | Transformed Bands | 28 |
2.4 | Variables Relevant to Adiabatic Shear Banding | 35 |
2.5 | Adiabatic Shear Bands in Non-Metals | 44 |
3 | Fracture and Damage Related to Adiabatic Shear Bands | 54 |
3.1 | Adiabatic Shear Band Induced Fracture | 54 |
3.2 | Microscopic Damage in Adiabatic Shear Bands | 57 |
3.3 | Metallurgical Implications | 69 |
3.4 | Effects of Stress State | 73 |
4 | Testing Methods | 76 |
4.1 | General Requirements and Remarks | 76 |
4.2 | Dynamic Torsion Tests | 80 |
4.3 | Dynamic Compression Tests | 91 |
4.4 | Contained Cylinder Tests | 95 |
4.5 | Transient Measurements | 98 |
5 | Constitutive Equations | 104 |
5.1 | Effect of Strain Rate on Stress-Strain Behaviour | 104 |
5.2 | Strain-Rate History Effects | 110 |
5.3 | Effect of Temperature on Stress-Strain Behaviour | 114 |
5.4 | Constitutive Equations for Non-Metals | 124 |
6 | Occurrence of Adiabatic Shear Bands | 125 |
6.1 | Empirical Criteria | 125 |
6.2 | One-Dimensional Equations and Linear Instability Analysis | 134 |
6.3 | Localization Analysis | 140 |
6.4 | Experimental Verification | 146 |
7 | Formation and Evolution of Shear Bands | 155 |
7.1 | Post-Instability Phenomena | 156 |
7.2 | Scaling and Approximations | 162 |
7.3 | Wave Trapping and Viscous Dissipation | 167 |
7.4 | The Intermediate Stage and the Formation of Adiabatic Shear Bands | 171 |
7.5 | Late Stage Behaviour and Post-Mortem Morphology | 179 |
7.6 | Adiabatic Shear Bands in Multi-Dimensional Stress States | 187 |
8 | Numerical Studies of Adiabatic Shear Bands | 194 |
8.1 | Objects, Problems and Techniques Involved in Numerical Simulations | 194 |
8.2 | One-Dimensional Simulation of Adiabatic Shear Banding | 199 |
8.3 | Simulation with Adaptive Finite Element Methods | 213 |
8.4 | Adiabatic Shear Bands in the Plane Strain Stress State | 218 |
9 | Selected Topics in Impact Dynamics | 229 |
9.1 | Planar Impact | 230 |
9.2 | Fragmentation | 237 |
9.3 | Penetration | 244 |
9.4 | Erosion | 255 |
9.5 | Ignition of Explosives | 261 |
9.6 | Explosive Welding | 268 |
10 | Selected Topics in Metalworking | 273 |
10.1 | Classification of Processes | 273 |
10.2 | Upsetting | 276 |
10.3 | Metalcutting | 286 |
10.4 | Blanking | 293 |
Appendices | 297 | |
A | Quick Reference | 298 |
B | Specific Heat and Thermal Conductivity | 301 |
C | Thermal Softening and Related Temperature Dependence | 312 |
D | Materials Showing Adiabatic Shear Bands | 335 |
E | Specification of Selected Materials Showing Adiabatic Shear Bands | 341 |
F | Conversion Factors | 357 |
References | 358 | |
Author Index | 369 | |
Subject Index | 375 |
Resumo:
The role played by torsion in gravitation is critically reviewed. After a description of the problems and controversies involving the physics of torsion, a comprehensive presentation of the teleparallel equivalent of general relativity is made. According to this theory, curvature and torsion are alternative ways of describing the gravitational field, and consequently related to the same degrees of freedom of gravity. However, more general gravity theories, like for example Einstein-Cartan and gauge theories for the Poincare and the affine groups, consider curvature and torsion as representing independent degrees of freedom. By using an active version of the strong equivalence principle, a possible solution to this conceptual question is reviewed. This solution ultimately favors the teleparallel point of view, and consequently the completeness of general relativity. A discussion of the consequences for gravitation is presented.
Resumo:
Presented in this thesis are original theoretical solutions for the determination of the ultimate strength in bending and torsion for: a) Plain concrete members. (b) Concrete members reinforced with longitudinal steel only. (c) Concrete members reinforced with longitudinal and transverse steel at yield. (d) Concrete members reinforced with longitudinal and transverse steel, where partial yielding and non yielding occurs. The theories are compared with available experimental results and show reasonable agreement.
Resumo:
This article examines the relevance of James Grunig and Todd Hunt’s (1984) theories to public relations practitioners’ roles in south east Queensland schools. It focuses in particular on the two-way symmetric model in this context. The geographical boundaries of the research mean that this article is intended primarily as an exploratory, descriptive analysis of a specific area rather than an exhaustive treatise on the general topic of public relations in Australian schools. However, it is hoped that it will prove useful in identifying bases for further study and discussion.
Resumo:
There has been increased research interest in Co-operative Vehicle Infrastructure Systems (CVIS) from the eld of Intelligent Transport Systems (ITS). However most of the research have focused on the engineering aspects and overlooked their relevance to the drivers' behaviour. This paper argues that the priority for cooperative systems is the need to improve drivers decision making and reduce drivers' crash risk exposure to improve road safety. Therefore any engineering solutions need to be considered in conjuction with traffic psychology theories on driver behaviour. This paper explores the advantages and limitations of existing systems and emphasizes various theoretical issues that arise in articulating cooperative systems' capabilities and drivers' behaviour.
Resumo:
Theories provide us with a frame of reference or model of how something works. Theoreticians who focus on the human state try to make a best-fit model. They try to imagine a typical case and generate a set of frameworks that might assist us to predict behaviour or some outcome, or simply explain how things work. They aim to understand how elements of interest might impact upon each other, and give rise to or predict behavioural, emotional, moral, physical, cognitive or social change for individuals and groups. Theories help give us insight. However, theories do not provide the templates for growth and change. They are simply someone’s informed and researched view regarding what might happen as people grow and interact with the physical and social world.
Resumo:
This paper explores recent theorising on the ways in which Principals exercise leadership in their schools with reference to the Leading 21st Century Schools Project in Australia. First, it provides an historical overview of approaches to leadership. Second, it utilises a rhetorical question about leadership to analyse the ways in which leadership and management tensions pose challenges to Principals' efforts to capacity build their staff. Third, it and suggests that the notion of distributed leadership has been the most useful method in fostering Asia literacy in the Leading 21st Century Schools Project.
Resumo:
Advanced Research Methods in the Built Environment addresses common topics raised by postgraduate level researchers rather than dealing with all aspects of the research process. Issues covered range from the practicalities of producing a journal article to the role of theory in research.
Resumo:
This inaugural book in the new series Advances in Mathematics Education is the most up to date, comprehensive and avant garde treatment of Theories of Mathematics Education which use two highly acclaimed ZDM special issues on theories of mathematics education (issue 6/2005 and issue 1/2006), as a point of departure. Historically grounded in the Theories of Mathematics Education (TME group) revived by the book editors at the 29th Annual PME meeting in Melbourne and using the unique style of preface-chapter-commentary, this volume consist of contributions from leading thinkers in mathematics education who have worked on theory building. This book is as much summative and synthetic as well as forward-looking by highlighting theories from psychology, philosophy and social sciences that continue to influence theory building. In addition a significant portion of the book includes newer developments in areas within mathematics education such as complexity theory, neurosciences, modeling, critical theory, feminist theory, social justice theory and networking theories. The 19 parts, 17 prefaces and 23 commentaries synergize the efforts of over 50 contributing authors scattered across the globe that are active in the ongoing work on theory development in mathematics education.
Resumo:
Any theory of thinking or teaching or learning rests on an underlying philosophy of knowledge. Mathematics education is situated at the nexus of two fields of inquiry, namely mathematics and education. However, numerous other disciplines interact with these two fields which compound the complexity of developing theories that define mathematics education. We first address the issue of clarifying a philosophy of mathematics education before attempting to answer whether theories of mathematics education are constructible? In doing so we draw on the foundational writings of Lincoln and Guba (1994), in which they clearly posit that any discipline within education, in our case mathematics education, needs to clarify for itself the following questions: (1) What is reality? Or what is the nature of the world around us? (2) How do we go about knowing the world around us? [the methodological question, which presents possibilities to various disciplines to develop methodological paradigms] and, (3) How can we be certain in the “truth” of what we know? [the epistemological question]