Contravariantly finite subcategories closed under predecessors
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
Let A be an Artin algebra and mod A be the category of finitely generated right A-modules. We prove that an additive full subcategory C of mod A closed under predecessors is contravariantly finite if and only if its right Ext-orthogonal is covariantly finite, or if and only if the Ext-injectives in C define a cotilting module (over the support algebra of C) or, equivalently, if and only if C is the support of the representable functors given by the Ext-injectives. (C) 2009 Elsevier Inc. All rights reserved. NSERC of Canada NSERC of Canada Universite de Sherbrooke Universite de Sherbrooke Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP |
Identificador |
JOURNAL OF ALGEBRA, v.322, n.4, p.1196-1213, 2009 0021-8693 http://producao.usp.br/handle/BDPI/30760 10.1016/j.jalgebra.2009.05.012 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Algebra |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #Contravariantly finite subcategories #Subcategories closed under predecessors #Tilting and cotilting modules #TORSION THEORIES #TILTING MODULES #ALGEBRAS #CATEGORIES #Mathematics |
Tipo |
article original article publishedVersion |