Contravariantly finite subcategories closed under predecessors


Autoria(s): ASSEM, Ibrahim; COELHO, Flavio U.; TREPODE, Sonia
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

Let A be an Artin algebra and mod A be the category of finitely generated right A-modules. We prove that an additive full subcategory C of mod A closed under predecessors is contravariantly finite if and only if its right Ext-orthogonal is covariantly finite, or if and only if the Ext-injectives in C define a cotilting module (over the support algebra of C) or, equivalently, if and only if C is the support of the representable functors given by the Ext-injectives. (C) 2009 Elsevier Inc. All rights reserved.

NSERC of Canada

NSERC of Canada

Universite de Sherbrooke

Universite de Sherbrooke

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP

Identificador

JOURNAL OF ALGEBRA, v.322, n.4, p.1196-1213, 2009

0021-8693

http://producao.usp.br/handle/BDPI/30760

10.1016/j.jalgebra.2009.05.012

http://dx.doi.org/10.1016/j.jalgebra.2009.05.012

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

Relação

Journal of Algebra

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #Contravariantly finite subcategories #Subcategories closed under predecessors #Tilting and cotilting modules #TORSION THEORIES #TILTING MODULES #ALGEBRAS #CATEGORIES #Mathematics
Tipo

article

original article

publishedVersion