995 resultados para Spatial constraints


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel approach to improving subspace clustering by exploiting the spatial constraints. The new method encourages the sparse solution to be consistent with the spatial geometry of the tracked points, by embedding weights into the sparse formulation. By doing so, we are able to correct sparse representations in a principled manner without introducing much additional computational cost. We discuss alternative ways to treat the missing and corrupted data using the latest theory in robust lasso regression and suggest numerical algorithms so solve the proposed formulation. The experiments on the benchmark Johns Hopkins 155 dataset demonstrate that exploiting spatial constraints significantly improves motion segmentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A broad variety of solid state NMR techniques were used to investigate the chain dynamics in several polyethylene (PE) samples, including ultrahigh molecular weight PEs (UHMW-PEs) and low molecular weight PEs (LMW-PEs). Via changing the processing history, i.e. melt/solution crystallization and drawing processes, these samples gain different morphologies, leading to different molecular dynamics. Due to the long chain nature, the molecular dynamics of polyethylene can be distinguished in local fluctuation and long range motion. With the help of NMR these different kinds of molecular dynamics can be monitored separately. In this work the local chain dynamics in non-crystalline regions of polyethylene samples was investigated via measuring 1H-13C heteronuclear dipolar coupling and 13C chemical shift anisotropy (CSA). By analyzing the motionally averaged 1H-13C heteronuclear dipolar coupling and 13C CSA, the information about the local anisotropy and geometry of motion was obtained. Taking advantage of the big difference of the 13C T1 relaxation time in crystalline and non-crystalline regions of PEs, the 1D 13C MAS exchange experiment was used to investigate the cooperative chain motion between these regions. The different chain organizations in non-crystalline regions were used to explain the relationship between the local fluctuation and the long range motion of the samples. In a simple manner the cooperative chain motion between crystalline and non-crystalline regions of PE results in the experimentally observed diffusive behavior of PE chain. The morphological influences on the diffusion motion have been discussed. The morphological factors include lamellar thickness, chain organization in non-crystalline regions and chain entanglements. Thermodynamics of the diffusion motion in melt and solution crystallized UHMW-PEs is discussed, revealing entropy-controlled features of the chain diffusion in PE. This thermodynamic consideration explains the counterintuitive relationship between the local fluctuation and the long range motion of the samples. Using the chain diffusion coefficient, the rates of jump motion in crystals of the melt crystallized PE have been calculated. A concept of "effective" jump motion has been proposed to explain the difference between the values derived from the chain diffusion coefficients and those in literatures. The observations of this thesis give a clear demonstration of the strong relationship between the sample morphology and chain dynamics. The sample morphologies governed by the processing history lead to different spatial constraints for the molecular chains, leading to different features of the local and long range chain dynamics. The knowledge of the morphological influence on the microscopic chain motion has many implications in our understanding of the alpha-relaxation process in PE and the related phenomena such as crystal thickening, drawability of PE, the easy creep of PE fiber, etc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present work, the effects of spatial constraints on the efficiency of task execution in systems underlain by geographical complex networks are investigated, where the probability of connection decreases with the distance between the nodes. The investigation considers several configurations of the parameters defining the network connectivity, and the Barabasi-Albert network model is also considered for comparisons. The results show that the effect of connectivity is significant only for shorter tasks, the locality of connection simplied by the spatial constraints reduces efficiency, and the addition of edges can improve the efficiency of the execution, although with increasing locality of the connections the improvement is small.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract Background The organization of the connectivity between mammalian cortical areas has become a major subject of study, because of its important role in scaffolding the macroscopic aspects of animal behavior and intelligence. In this study we present a computational reconstruction approach to the problem of network organization, by considering the topological and spatial features of each area in the primate cerebral cortex as subsidy for the reconstruction of the global cortical network connectivity. Starting with all areas being disconnected, pairs of areas with similar sets of features are linked together, in an attempt to recover the original network structure. Results Inferring primate cortical connectivity from the properties of the nodes, remarkably good reconstructions of the global network organization could be obtained, with the topological features allowing slightly superior accuracy to the spatial ones. Analogous reconstruction attempts for the C. elegans neuronal network resulted in substantially poorer recovery, indicating that cortical area interconnections are relatively stronger related to the considered topological and spatial properties than neuronal projections in the nematode. Conclusion The close relationship between area-based features and global connectivity may hint on developmental rules and constraints for cortical networks. Particularly, differences between the predictions from topological and spatial properties, together with the poorer recovery resulting from spatial properties, indicate that the organization of cortical networks is not entirely determined by spatial constraints.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It has often been supposed that patterns of rhythmic bimanual coordination in which homologous muscles are engaged simultaneously, are performed in a more stable manner than those in which the same muscles are activated in an alternating fashion. In order to assess the efficacy of this constraint, the present study investigated the effect of forearm posture (prone or supine) on bimanual abduction-adduction movements of the wrist in isodirectional and non-isodirectional modes of coordination. Irrespective of forearm posture, non-isodirectional coordination was observed to be more stable than isodirectional coordination. In the latter condition, there was a more severe deterioration of coordination accuracy/stability as a function of cycling frequency than in the former condition. With elevations in cycling frequency, the performers recruited extra mechanical degrees of freedom, principally via flexion-extension of the wrist, which gave rise to increasing motion in the vertical plane. The increases in movement amplitude in the vertical plane were accompanied by decreasing amplitude in the horizontal plane. In agreement with previous studies, the present findings confirm that the relative timing of homologous muscle activation acts as a principal constraint upon the stability of interlimb coordination. Furthermore, it is argued that the use of manipulations of limb posture to investigate the role of other classes of constraint (e.g. perceptual) should be approached with caution because such manipulations affect the mapping between muscle activation patterns, movement dynamics and kinematics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With hundreds of millions of users reporting locations and embracing mobile technologies, Location Based Services (LBSs) are raising new challenges. In this dissertation, we address three emerging problems in location services, where geolocation data plays a central role. First, to handle the unprecedented growth of generated geolocation data, existing location services rely on geospatial database systems. However, their inability to leverage combined geographical and textual information in analytical queries (e.g. spatial similarity joins) remains an open problem. To address this, we introduce SpsJoin, a framework for computing spatial set-similarity joins. SpsJoin handles combined similarity queries that involve textual and spatial constraints simultaneously. LBSs use this system to tackle different types of problems, such as deduplication, geolocation enhancement and record linkage. We define the spatial set-similarity join problem in a general case and propose an algorithm for its efficient computation. Our solution utilizes parallel computing with MapReduce to handle scalability issues in large geospatial databases. Second, applications that use geolocation data are seldom concerned with ensuring the privacy of participating users. To motivate participation and address privacy concerns, we propose iSafe, a privacy preserving algorithm for computing safety snapshots of co-located mobile devices as well as geosocial network users. iSafe combines geolocation data extracted from crime datasets and geosocial networks such as Yelp. In order to enhance iSafe's ability to compute safety recommendations, even when crime information is incomplete or sparse, we need to identify relationships between Yelp venues and crime indices at their locations. To achieve this, we use SpsJoin on two datasets (Yelp venues and geolocated businesses) to find venues that have not been reviewed and to further compute the crime indices of their locations. Our results show a statistically significant dependence between location crime indices and Yelp features. Third, review centered LBSs (e.g., Yelp) are increasingly becoming targets of malicious campaigns that aim to bias the public image of represented businesses. Although Yelp actively attempts to detect and filter fraudulent reviews, our experiments showed that Yelp is still vulnerable. Fraudulent LBS information also impacts the ability of iSafe to provide correct safety values. We take steps toward addressing this problem by proposing SpiDeR, an algorithm that takes advantage of the richness of information available in Yelp to detect abnormal review patterns. We propose a fake venue detection solution that applies SpsJoin on Yelp and U.S. housing datasets. We validate the proposed solutions using ground truth data extracted by our experiments and reviews filtered by Yelp.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With hundreds of millions of users reporting locations and embracing mobile technologies, Location Based Services (LBSs) are raising new challenges. In this dissertation, we address three emerging problems in location services, where geolocation data plays a central role. First, to handle the unprecedented growth of generated geolocation data, existing location services rely on geospatial database systems. However, their inability to leverage combined geographical and textual information in analytical queries (e.g. spatial similarity joins) remains an open problem. To address this, we introduce SpsJoin, a framework for computing spatial set-similarity joins. SpsJoin handles combined similarity queries that involve textual and spatial constraints simultaneously. LBSs use this system to tackle different types of problems, such as deduplication, geolocation enhancement and record linkage. We define the spatial set-similarity join problem in a general case and propose an algorithm for its efficient computation. Our solution utilizes parallel computing with MapReduce to handle scalability issues in large geospatial databases. Second, applications that use geolocation data are seldom concerned with ensuring the privacy of participating users. To motivate participation and address privacy concerns, we propose iSafe, a privacy preserving algorithm for computing safety snapshots of co-located mobile devices as well as geosocial network users. iSafe combines geolocation data extracted from crime datasets and geosocial networks such as Yelp. In order to enhance iSafe's ability to compute safety recommendations, even when crime information is incomplete or sparse, we need to identify relationships between Yelp venues and crime indices at their locations. To achieve this, we use SpsJoin on two datasets (Yelp venues and geolocated businesses) to find venues that have not been reviewed and to further compute the crime indices of their locations. Our results show a statistically significant dependence between location crime indices and Yelp features. Third, review centered LBSs (e.g., Yelp) are increasingly becoming targets of malicious campaigns that aim to bias the public image of represented businesses. Although Yelp actively attempts to detect and filter fraudulent reviews, our experiments showed that Yelp is still vulnerable. Fraudulent LBS information also impacts the ability of iSafe to provide correct safety values. We take steps toward addressing this problem by proposing SpiDeR, an algorithm that takes advantage of the richness of information available in Yelp to detect abnormal review patterns. We propose a fake venue detection solution that applies SpsJoin on Yelp and U.S. housing datasets. We validate the proposed solutions using ground truth data extracted by our experiments and reviews filtered by Yelp.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extreme isotopic variations among extraterrestrial materials provide great insights into the origin and evolution of the Solar System. In this tutorial review, we summarize how the measurement of isotope ratios can expand our knowledge of the processes that took place before and during the formation of our Solar System and its subsequent early evolution. The continuous improvement of mass spectrometers with high precision and increased spatial resolution, including secondary ion mass spectrometry (SIMS), thermal ionization mass spectrometry (TIMS) and multi collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS), along with the ever growing amounts of available extraterrestrial samples have significantly increased the temporal and spatial constraints on the sequence of events that took place since and before the formation of the first Solar System condensates (i.e., Ca-Al-rich inclusions). Grains sampling distinct stellar environments with a wide range of isotopic compositions were admixed to, but possibly not fully homogenized in, the Sun's parent molecular cloud or the nascent Solar System. Before, during and after accretion of the nebula, as well as the formation and subsequent evolution of planetesimals and planets, chemical and physical fractionation processes irrevocably changed the chemical and isotopic compositions of all Solar System bodies. Since the formation of the first Solar System minerals and rocks 4.568 Gyr ago, short-and long-lived radioactive decay and cosmic ray interaction also contributed to the modification of the isotopic framework of the Solar System, and permit to trace the formation and evolution of directly accessible and inferred planetary and stellar isotopic reservoirs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Identification of residue-residue contacts from primary sequence can be used to guide protein structure prediction. Using Escherichia coli CcdB as the test case, we describe an experimental method termed saturation-suppressor mutagenesis to acquire residue contact information. In this methodology, for each of five inactive CcdB mutants, exhaustive screens for suppressors were performed. Proximal suppressors were accurately discriminated from distal suppressors based on their phenotypes when present as single mutants. Experimentally identified putative proximal pairs formed spatial constraints to recover >98% of native-like models of CcdB from a decoy dataset. Suppressor methodology was also applied to the integral membrane protein, diacylglycerol kinase A where the structures determined by X-ray crystallography and NMR were significantly different. Suppressor as well as sequence co-variation data clearly point to the Xray structure being the functional one adopted in vivo. The methodology is applicable to any macromolecular system for which a convenient phenotypic assay exists.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bends are widely used in pipelines carrying single- and two-phase fluids in both ground and space applications. In particular, they play more important role in space applications due to the extreme spatial constraints. In the present study, a set of experimental data of two-phase flow patterns and their transitions in a 90degrees bend with inner diameter of 12.7 mm. and curvature radius of 76.5 mm at microgravity conditions are reported. Gas and liquid superficial velocities are found to range from (1.0 similar to 23.6) m/s for gas and (0.09 similar to 0.5) m/s for liquid, respectively. Three major flow patterns, namely slug, slug-annular transitional, and annular flows, are observed in this study. Focusing on the differences between flow patterns in bends and their counterparts in straight pipes, detailed analyses of their characteristics are made. The transitions between adjoining flow patterns are found to be more or less the same as those in straight pipes, and can be predicted using Weber number models satisfactorily. The reasons for such agreement are carefully examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a matching framework to find robust correspondences between image features by considering the spatial information between them. To achieve this, we define spatial constraints on the relative orientation and change in scale between pairs of features. A pairwise similarity score, which measures the similarity of features based on these spatial constraints, is considered. The pairwise similarity scores for all pairs of candidate correspondences are then accumulated in a 2-D similarity space. Robust correspondences can be found by searching for clusters in the similarity space, since actual correspondences are expected to form clusters that satisfy similar spatial constraints in this space. As it is difficult to achieve reliable and consistent estimates of scale and orientation, an additional contribution is that these parameters do not need to be determined at the interest point detection stage, which differs from conventional methods. Polar matching of dual-tree complex wavelet transform features is used, since it fits naturally into the framework with the defined spatial constraints. Our tests show that the proposed framework is capable of producing robust correspondences with higher correspondence ratios and reasonable computational efficiency, compared to other well-known algorithms. © 1992-2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a new characterization of protein structure based on the natural tetrahedral geometry of the β carbon and a new geometric measure of structural similarity, called visible volume. In our model, the side-chains are replaced by an ideal tetrahedron, the orientation of which is fixed with respect to the backbone and corresponds to the preferred rotamer directions. Visible volume is a measure of the non-occluded empty space surrounding each residue position after the side-chains have been removed. It is a robust, parameter-free, locally-computed quantity that accounts for many of the spatial constraints that are of relevance to the corresponding position in the native structure. When computing visible volume, we ignore the nature of both the residue observed at each site and the ones surrounding it. We focus instead on the space that, together, these residues could occupy. By doing so, we are able to quantify a new kind of invariance beyond the apparent variations in protein families, namely, the conservation of the physical space available at structurally equivalent positions for side-chain packing. Corresponding positions in native structures are likely to be of interest in protein structure prediction, protein design, and homology modeling. Visible volume is related to the degree of exposure of a residue position and to the actual rotamers in native proteins. In this article, we discuss the properties of this new measure, namely, its robustness with respect to both crystallographic uncertainties and naturally occurring variations in atomic coordinates, and the remarkable fact that it is essentially independent of the choice of the parameters used in calculating it. We also show how visible volume can be used to align protein structures, to identify structurally equivalent positions that are conserved in a family of proteins, and to single out positions in a protein that are likely to be of biological interest. These properties qualify visible volume as a powerful tool in a variety of applications, from the detailed analysis of protein structure to homology modeling, protein structural alignment, and the definition of better scoring functions for threading purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Localization is essential feature for many mobile wireless applications. Data collected from applications such as environmental monitoring, package tracking or position tracking has no meaning without knowing the location of this data. Other applications have location information as a building block for example, geographic routing protocols, data dissemination protocols and location-based services such as sensing coverage. Many of the techniques have the trade-off among many features such as deployment of special hardware, level of accuracy and computation power. In this paper, we present an algorithm that extracts location constraints from the connectivity information. Our solution, which does not require any special hardware and a small number of landmark nodes, uses two types of location constraints. The spatial constraints derive the estimated locations observing which nodes are within communication range of each other. The temporal constraints refine the areas, computed by the spatial constraints, using properties of time and space extracted from a contact trace. The intuition of the temporal constraints is to limit the possible locations that a node can be using its previous and future locations. To quantify this intuitive improvement in refine the nodes estimated areas adding temporal information, we performed simulations using synthetic and real contact traces. The results show this improvement and also the difficulties of using real traces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the pose recovery problem of a particular articulated object: the human body. In this model-based approach, the 2D-shape is associated to the corresponding stick figure allowing the joint segmentation and pose recovery of the subject observed in the scene. The main disadvantage of 2D-models is their restriction to the viewpoint. To cope with this limitation, local spatio-temporal 2D-models corresponding to many views of the same sequences are trained, concatenated and sorted in a global framework. Temporal and spatial constraints are then considered to build the probabilistic transition matrix (PTM) that gives a frame to frame estimation of the most probable local models to use during the fitting procedure, thus limiting the feature space. This approach takes advantage of 3D information avoiding the use of a complex 3D human model. The experiments carried out on both indoor and outdoor sequences have demonstrated the ability of this approach to adequately segment pedestrians and estimate their poses independently of the direction of motion during the sequence. (c) 2008 Elsevier Ltd. All rights reserved.