Predicting the connectivity of primate cortical networks from topological and spatial node properties
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
26/08/2013
26/08/2013
2007
|
Resumo |
Abstract Background The organization of the connectivity between mammalian cortical areas has become a major subject of study, because of its important role in scaffolding the macroscopic aspects of animal behavior and intelligence. In this study we present a computational reconstruction approach to the problem of network organization, by considering the topological and spatial features of each area in the primate cerebral cortex as subsidy for the reconstruction of the global cortical network connectivity. Starting with all areas being disconnected, pairs of areas with similar sets of features are linked together, in an attempt to recover the original network structure. Results Inferring primate cortical connectivity from the properties of the nodes, remarkably good reconstructions of the global network organization could be obtained, with the topological features allowing slightly superior accuracy to the spatial ones. Analogous reconstruction attempts for the C. elegans neuronal network resulted in substantially poorer recovery, indicating that cortical area interconnections are relatively stronger related to the considered topological and spatial properties than neuronal projections in the nematode. Conclusion The close relationship between area-based features and global connectivity may hint on developmental rules and constraints for cortical networks. Particularly, differences between the predictions from topological and spatial properties, together with the poorer recovery resulting from spatial properties, indicate that the organization of cortical networks is not entirely determined by spatial constraints. Luciano da F. Costa thanks FAPESP (05/00587-5) and CNPq (308231/03-1) for sponsorship. Marcus Kaiser acknowledges support from EPSRC (EP/E002331/1). Luciano da F. Costa thanks FAPESP (05/005875) and CNPq (308231/031) for sponsorship. Marcus Kaiser acknowledges support from EPSRC (EP/E002331/1). |
Identificador |
1752-0509 http://www.producao.usp.br/handle/BDPI/33128 10.1186/1752-0509-1-16 |
Idioma(s) |
eng |
Relação |
BMC Systems Biology |
Direitos |
openAccess Costa et al; licensee BioMed Central Ltd. - This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Tipo |
article original article |