1000 resultados para Sistemas de equações lineares
Resumo:
A paralelização de métodos de resolução de sistemas de equações lineares e não lineares é uma atividade que tem concentrado várias pesquisas nos últimos anos. Isto porque, os sistemas de equações estão presentes em diversos problemas da computação cientí ca, especialmente naqueles que empregam equações diferenciais parciais (EDPs) que modelam fenômenos físicos, e que precisam ser discretizadas para serem tratadas computacionalmente. O processo de discretização resulta em sistemas de equações que necessitam ser resolvidos a cada passo de tempo. Em geral, esses sistemas têm como características a esparsidade e um grande número de incógnitas. Devido ao porte desses sistemas é necessária uma grande quantidade de memória e velocidade de processamento, sendo adequado o uso de computação de alto desempenho na obtenção da solução dos mesmos. Dentro desse contexto, é feito neste trabalho um estudo sobre o uso de métodos de decomposição de domínio na resolução de sistemas de equações em paralelo. Esses métodos baseiam-se no particionamento do domínio computacional em subdomínios, de modo que a solução global do problema é obtida pela combinação apropriada das soluções de cada subdomínio. Uma vez que diferentes subdomínios podem ser tratados independentemente, tais métodos são atrativos para ambientes paralelos. Mais especi camente, foram implementados e analisados neste trabalho, três diferentes métodos de decomposição de domínio. Dois desses com sobreposição entre os subdomínios, e um sem sobreposição. Dentre os métodos com sobreposição foram estudados os métodos aditivo de Schwarz e multiplicativo de Schwarz. Já dentre os métodos sem sobreposição optou-se pelo método do complemento de Schur. Todas as implementações foram desenvolvidas para serem executadas em clusters de PCs multiprocessados e estão incorporadas ao modelo HIDRA, que é um modelo computacional paralelo multifísica desenvolvido no Grupo de Matemática da Computação e Processamento de Alto Desempenho (GMCPAD) para a simulação do escoamento e do transporte de substâncias em corpos de águas.
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Este trabalho consiste na proposta de uma sequencia didática para o ensino de Sistemas de Equações Algébricas Lineares na qual estabelecemos uma conexão entre o Método da Substituição e o buscando a conversão de registros de representação. O objetivo da proposta foi verificar se os alunos conseguem realizar a conexão entre os dois métodos desenvolvendo a conversão do método da substituição no Método do escalonamento caracterizando assim, o aprendizado do objeto matemático estudado, segundo a teoria de registros de representação semiótica de Raimund Duval. A pesquisa foi realizada com alunos do ensino médio em uma escola da rede pública estadual da cidade de Belém e os resultados apontaram para o estabelecimento de uma conexão entre os dois métodos empregados no processo de resolução de sistemas.
Resumo:
A geração de trajectórias de robôs em tempo real é uma tarefa muito complexa, não
existindo ainda um algoritmo que a permita resolver de forma eficaz. De facto, há
controladores eficientes para trajectórias previamente definidas, todavia, a adaptação a
variações imprevisíveis, como sendo terrenos irregulares ou obstáculos, constitui ainda um
problema em aberto na geração de trajectórias em tempo real de robôs.
Neste trabalho apresentam-se modelos de geradores centrais de padrões de locomoção
(CPGs), inspirados na biologia, que geram os ritmos locomotores num robô quadrúpede.
Os CPGs são modelados matematicamente por sistemas acoplados de células (ou
neurónios), sendo a dinâmica de cada célula dada por um sistema de equações diferenciais
ordinárias não lineares. Assume-se que as trajectórias dos robôs são constituídas por esta
parte rítmica e por uma parte discreta. A parte discreta pode ser embebida na parte rítmica,
(a.1) como um offset ou (a.2) adicionada às expressões rítmicas, ou (b) pode ser calculada
independentemente e adicionada exactamente antes do envio dos sinais para as articulações
do robô. A parte discreta permite inserir no passo locomotor uma perturbação, que poderá
estar associada à locomoção em terrenos irregulares ou à existência de obstáculos na
trajectória do robô. Para se proceder á análise do sistema com parte discreta, será variado o
parâmetro g. O parâmetro g, presente nas equações da parte discreta, representa o offset do
sinal após a inclusão da parte discreta.
Revê-se a teoria de bifurcação e simetria que permite a classificação das soluções
periódicas produzidas pelos modelos de CPGs com passos locomotores quadrúpedes. Nas
simulações numéricas, usam-se as equações de Morris-Lecar e o oscilador de Hopf como
modelos da dinâmica interna de cada célula para a parte rítmica. A parte discreta é
modelada por um sistema inspirado no modelo VITE. Medem-se a amplitude e a
frequência de dois passos locomotores para variação do parâmetro g, no intervalo [-5;5].
Consideram-se duas formas distintas de incluir a parte discreta na parte rítmica: (a) como
um (a.1) offset ou (a.2) somada nas expressões que modelam a parte rítmica, e (b) somada
ao sinal da parte rítmica antes de ser enviado às articulações do robô. No caso (a.1),
considerando o oscilador de Hopf como dinâmica interna das células, verifica-se que a amplitude e frequência se mantêm constantes para -5
Resumo:
O objetivo desta dissertação é a paralelização e a avaliação do desempenho de alguns métodos de resolução de sistemas lineares esparsos. O DECK foi utilizado para implementação dos métodos em um cluster de PCs. A presente pesquisa é motivada pela vasta utilização de Sistemas de Equações Lineares em várias áreas científicas, especialmente, na modelagem de fenômenos físicos através de Equações Diferenciais Parciais (EDPs). Nessa área, têm sido desenvolvidas pesquisas pelo GMC-PAD – Grupo de Matemática da Computação e Processamento de Alto Desempenho da UFRGS, para as quais esse trabalho vem contribuindo. Outro fator de motivação para a realização dessa pesquisa é a disponibilidade de um cluster de PCs no Instituto de Informática e do ambiente de programação paralela DECK – Distributed Execution and Communication Kernel. O DECK possibilita a programação em ambientes paralelos com memória distribuída e/ou compartilhada. Ele está sendo desenvolvido pelo grupo de pesquisas GPPD – Grupo de Processamento Paralelo e Distribuído e com a paralelização dos métodos, nesse ambiente, objetiva-se também validar seu funcionamento e avaliar seu potencial e seu desempenho. Os sistemas lineares originados pela discretização de EDPs têm, em geral, como características a esparsidade e a numerosa quantidade de incógnitas. Devido ao porte dos sistemas, para a resolução é necessária grande quantidade de memória e velocidade de processamento, característicos de computações de alto desempenho. Dois métodos de resolução foram estudados e paralelizados, um da classe dos métodos diretos, o Algoritmo de Thomas e outro da classe dos iterativos, o Gradiente Conjugado. A forma de paralelizar um método é completamente diferente do outro. Isso porque o método iterativo é formado por operações básicas de álgebra linear, e o método direto é formado por operações elementares entre linhas e colunas da matriz dos coeficientes do sistema linear. Isso permitiu a investigação e experimentação de formas distintas de paralelismo. Do método do Gradiente Conjugado, foram feitas a versão sem précondicionamento e versões pré-condicionadas com o pré-condicionador Diagonal e com o pré-condicionador Polinomial. Do Algoritmo de Thomas, devido a sua formulação, somente a versão básica foi feita. Após a paralelização dos métodos de resolução, avaliou-se o desempenho dos algoritmos paralelos no cluster, através da realização de medidas do tempo de execução e foram calculados o speedup e a eficiência. As medidas empíricas foram realizadas com variações na ordem dos sistemas resolvidos e no número de nodos utilizados do cluster. Essa avaliação também envolveu a comparação entre as complexidades dos algoritmos seqüenciais e a complexidade dos algoritmos paralelos dos métodos. Esta pesquisa demonstra o desempenho de métodos de resolução de sistemas lineares esparsos em um ambiente de alto desempenho, bem como as potencialidades do DECK. Aplicações que envolvam a resolução desses sistemas podem ser realizadas no cluster, a partir do que já foi desenvolvido, bem como, a investigação de précondicionadores, comparação do desempenho com outros métodos de resolução e paralelização dos métodos com outras ferramentas possibilitando uma melhor avaliação do DECK.
Resumo:
In this work we studied the method to solving linear equations system, presented in the book titled "The nine chapters on the mathematical art", which was written in the first century of this era. This work has the intent of showing how the mathematics history can be used to motivate the introduction of some topics in high school. Through observations of patterns which repeats itself in the presented method, we were able to introduce, in a very natural way, the concept of linear equations, linear equations system, solution of linear equations, determinants and matrices, besides the Laplacian development for determinants calculations of square matrices of order bigger than 3, then considering some of their general applications
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este estudo, realizado no 8.º ano de escolaridade, tem como principal objetivo compreender como a calculadora gráfica medeia a aprendizagem das Funções e dos Sistemas de Equações. Foca-se na aprendizagem que os alunos fazem destes conceitos, na relação que estabelecem entre as várias representações e no modo como utilizam a calculadora gráfica na realização das tarefas propostas. Ao longo deste estudo, procura-se responder às seguintes questões: Como é que os alunos usam a calculadora gráfica na resolução de tarefas que envolvem Funções e Sistemas de Equações? Como é que os alunos integram o uso de diferentes representações do conceito de Função? Qual o papel deste artefacto enquanto mediador das aprendizagens? Far-se-á o enquadramento teórico baseado na literatura de referência, no que respeita ao processo de apropriação da calculadora gráfica por parte dos alunos; à álgebra e ao pensamento algébrico; às Funções e diferentes representações; aos Sistemas de Equações; à calculadora gráfica; ao papel do professor; às tarefas e à modelação matemática. Seguiu-se uma metodologia de investigação de natureza qualitativa, baseada num estudo de caso referente a alunos com desempenhos académicos distintos. A recolha de dados foi baseada na observação de aulas, nos registos escritos pelos alunos e na análise dos procedimentos recolhidos das calculadoras gráficas ao longo da realização das tarefas propostas. A investigadora assumiu, essencialmente, o papel de observadora participante. Da análise dos dados pode constatar-se que no seu trabalho com Funções e Sistemas de Equações, os alunos, optam muitas vezes pelo uso da calculadora gráfica, nomeadamente em questões relacionadas com a representação gráfica, no entanto, conseguem usar de forma eficaz as várias representações. As conclusões alcançadas apontam sobretudo para uma forma diferente de olhar estes temas quando a abordagem é feita através de várias representações com recurso à calculadora gráfica. Esta ferramenta, além de ser utilizada de diferentes modos, desempenhou um papel fundamental como mediadora das aprendizagens desenvolvidas.
Resumo:
The Michaelis-Menten equation is used in many biochemical and bioinorganic kinetic studies involving homogeneous catalysis. Otherwise, it is known that determination of Michaelis-Menten parameters K M, Vmax, and k cat by the well-known Lineweaver-Burk double reciprocal linear equation does not produce the best values for these parameters. In this paper we present a discussion on different linear equations which can be used to calculate these parameters and we compare their results with the values obtained by the more reliable nonlinear least-square fit.
Resumo:
A modelagem matemática de problemas importantes e significativos da engenharia, física e ciências sociais pode ser formulada por um conjunto misto de equações diferenciais e algébricas (EADs). Este conjunto misto de equações deve ser previamente caracterizado quanto a resolubilidade, índice diferencial e condições iniciais, para que seja possível utilizar um código computacional para resolvê-lo numericamente. Sabendo-se que o índice diferencial é o parâmetro mais importante para caracterizar um sistema de EADs, neste trabalho aplica-se a redução de índice através da teoria de grafos, proposta por Pantelides (1988). Este processo de redução de índice é realizado numericamente através do algoritmo DAGRAFO, que transforma um sistema de índice superior para um sistema reduzido de índice 0 ou 1. Após esta etapa é necessário fornecer um conjunto de condições inicias consistentes para iniciar o código numérico de integração, DASSLC. No presente trabalho discute-se três técnicas para a inicialização consistente e integração numérica de sistemas de EADs de índice superior. A primeira técnica trabalha exclusivamente com o sistema reduzido, a segunda com o sistema reduzido e as restrições adicionais que surgem após a redução do índice introduzindo variáveis de restrição, e a terceira técnica trabalha com o sistema reduzido e as derivadas das variáveis de restrição. Após vários testes, conclui-se que a primeira e terceira técnica podem gerar um conjunto solução mesmo quando recebem condições iniciais inconsistentes. Para a primeira técnica, esta característica decorre do fato que no sistema reduzido algumas restrições, muitas vezes com significado físico importante, podem ser perdidas quando as equações algébricas são diferenciadas. Trabalhando com o sistema reduzido e as derivadas das variáveis de restrição, o erro da inicialização é absorvido pelas variáveis de restrição, mascarando a precisão do código numérico. A segunda técnica adotada não tem como absorver os erros da inicialização pelas variáveis de restrição, desta forma, quando as restrições adicionais não são satisfeitas, não é gerada solução alguma. Entretanto, ao aplicar condições iniciais consistentes para todas as técnicas, conclui-se que o sistema reduzido com as derivadas das variáveis restrição é o método mais conveniente, pois apresenta melhor desempenho computacional, inclusive quando a matriz jacobiana do sistema apresenta problema de mau condicionamento, e garante que todas as restrições que compõem o sistema original estejam presentes no sistema reduzido.
Resumo:
Essa tese se propõe fazer uma comparação entre duas técnicas alternativas para estudo de impactos marginais de variáveis sócio-econômicas sobre as taxas de crescimento per-capita de grupos de países durante período de 1965 1985: regressão em sistemas de equações com dados em seções transversais, usada por Barro Sala-i-Martin (1995), entre outros, e a regressão em painel com coeficientes individuais. Tentaremos mostrar que os resultados associados certas variáveis são bastante diferentes procuraremos entender algumas causas dessas diferenças. Além disso, estaremos preocupados em avaliar como os resultados são afetados ao alterarmos conjunto de países estudado, em particular quando tomamos grupos de países com uma série de características semelhantes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.
Resumo:
Este livro pretende ser um documento onde a ligação entre a abordagem clássica da Álgebra Linear habitualmente encontrada na literatura e a Teoria de Matrizes seja apresentada de forma simples e rigorosa em simultâneo com a exposição de aplicações. Conscientes da vastidão de possíveis caminhos a seguir na apresentação das matérias inerentes à Álgebra e ao Cálculo Matricial, os autores optaram por seguir uma orientação que tivesse em linha de conta a atual tendência para a diminuição dos tempos letivos e incentivo à utilização de software MATLAB®, principalmente nos cursos de Engenharia. Neste sentido, este livro está organizado em cinco capítulos – Revisão de conceitos elementares, Cálculo matricial e determinantes, Sistemas de equações lineares, Espaços vetoriais e transformações lineares e Geometria analítica – ao longo dos quais se procurou obedecer a uma estrutura evolutiva em torno do rigor e da formalidade, mas sem excessos de nomenclatura. No final de cada capítulo, é proporcionado um conjunto de exercícios variados e não repetitivos, em número suficiente e equilibrado, apresentando-se alguns deles já resolvidos, propondo-se outros para resolução e ilustrando algumas aplicações práticas de integração de conhecimentos, recorrendo ao software MATLAB®.