971 resultados para Silicon nanowire


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The improvement of subthreshold slope due to impact ionization is compared between ""standard"" inversion-mode multigate silicon nanowire transistors and junctionless transistors. The length of the region over which impact ionization takes place, as well as the amplitude of the impact ionization rate are found to be larger in the junctionless devices, which reduces the drain voltage necessary to obtain a sharp subthreshold slope. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3358131]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report here on a new insight for bio- sensing based on the memristive effect of functional- ized Schottky-barrier memristive silicon nanowire in dry environment. The device concept is discussed. Elec- trical measurements confirm the bio-detection by the narrowing of the memristive Ids − Vds hysteresis upon interaction of antigen with antibody-functionalized nanowire.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To continuously improve the performance of metal-oxide-semiconductor field-effect-transistors (MOSFETs), innovative device architectures, gate stack engineering and mobility enhancement techniques are under investigation. In this framework, new physics-based models for Technology Computer-Aided-Design (TCAD) simulation tools are needed to accurately predict the performance of upcoming nanoscale devices and to provide guidelines for their optimization. In this thesis, advanced physically-based mobility models for ultrathin body (UTB) devices with either planar or vertical architectures such as single-gate silicon-on-insulator (SOI) field-effect transistors (FETs), double-gate FETs, FinFETs and silicon nanowire FETs, integrating strain technology and high-κ gate stacks are presented. The effective mobility of the two-dimensional electron/hole gas in a UTB FETs channel is calculated taking into account its tensorial nature and the quantization effects. All the scattering events relevant for thin silicon films and for high-κ dielectrics and metal gates have been addressed and modeled for UTB FETs on differently oriented substrates. The effects of mechanical stress on (100) and (110) silicon band structures have been modeled for a generic stress configuration. Performance will also derive from heterogeneity, coming from the increasing diversity of functions integrated on complementary metal-oxide-semiconductor (CMOS) platforms. For example, new architectural concepts are of interest not only to extend the FET scaling process, but also to develop innovative sensor applications. Benefiting from properties like large surface-to-volume ratio and extreme sensitivity to surface modifications, silicon-nanowire-based sensors are gaining special attention in research. In this thesis, a comprehensive analysis of the physical effects playing a role in the detection of gas molecules is carried out by TCAD simulations combined with interface characterization techniques. The complex interaction of charge transport in silicon nanowires of different dimensions with interface trap states and remote charges is addressed to correctly reproduce experimental results of recently fabricated gas nanosensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graphene as a carbon monolayer has attracted extensive research interest in recent years. My research work within the frame of density functional theory has suggested that positioning graphene in proximity to h-BN may induce a finite energy gap in graphene, which is important for device applications. For an AB-stacked graphene/BN bilayer, a finite gap is induced at the equilibrium configuration. This induced gap shows a linear relationship with the applied strain. For a graphene/BN/graphene trilayer, a negligible gap is predicted in the ground state due to the overall symmetry of the system. When an electric field is applied, a tunable gap can be obtained for both AAA and ABA stackings. Enhanced tunneling current in the AA-stacked bilayer nanoribbons is predicted compared to either single-layer or AB-stacked bilayer nanoribbons. Interlayer separation between the nanoribbons is shown to have a profound impact on the conducting features. The effect of boron or nitrogen doping on the electronic transport properties of C60 fullerene is studied. The BC59 fullerene exhibits a considerably higher current than the pristine or nitrogen doped fullerenes beyond the applied bias of 1 V, suggesting it can be an effective semiconductor in p-type devices. The interaction between nucleic acid bases - adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U) - and a hydrogen-passivated silicon nanowire (SiNW) is investigated. The binding energy of the bases with the SiNW shows the order: G > A~C~T~U. This suggests that the interaction strength of a hydrogen passivated SiNW with the nucleic acid bases is nearly the same-G being an exception. The nature of the interaction is suggested to be electrostatic.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Semiconductor chip packaging has evolved from single chip packaging to 3D heterogeneous system integration using multichip stacking in a single module. One of the key challenges in 3D integration is the high density interconnects that need to be formed between the chips with through-silicon-vias (TSVs) and inter-chip interconnects. Anisotropic Conductive Film (ACF) technology is one of the low-temperature, fine-pitch interconnect method, which has been considered as a potential replacement for solder interconnects in line with continuous scaling of the interconnects in the IC industry. However, the conventional ACF materials are facing challenges to accommodate the reduced pad and pitch size due to the micro-size particles and the particle agglomeration issue. A new interconnect material - Nanowire Anisotropic Conductive Film (NW-ACF), composed of high density copper nanowires of ~ 200 nm diameter and 10-30 µm length that are vertically distributed in a polymeric template, is developed in this work to tackle the constrains of the conventional ACFs and serves as an inter-chip interconnect solution for potential three-dimensional (3D) applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This letter presents the properties of nMOS junctionless nanowire transistors (JNTs) under cryogenic operation. Experimental results of drain current, subthreshold slope, maximum transconductance at low electric field, and threshold voltage, as well as its variation with temperature, are presented. Unlike in classical devices, the drain current of JNTs decreases when temperature is lowered, although the maximum transconductance increases when the temperature is lowered down to 125 K. An analytical model for the threshold voltage is proposed to explain the influence of nanowire width and doping concentration on its variation with temperature. It is shown that the wider the nanowire or the lower the doping concentration, the higher the threshold voltage variation with temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This communication presents a novel kind of silicon nanomaterial: freestanding Si nanowire arrays (Si NWAs), which are synthesized facilely by one-step template-free electro-deoxidation of SiO2 in molten CaCl2. The self-assembling growth process of this material is also investigated preliminarily.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and most promising oxide-assisted catalyst-free method is used to prepare silicon nitride nanowires that give rise to high yield in a short time. After a brief analysis of the state of the art, we reveal the crucial role played by the oxygen partial pressure: when oxygen partial pressure is slightly below the threshold of passive oxidation, a high yield inhibiting the formation of any silica layer covering the nanowires occurs and thanks to the synthesis temperature one can control nanowire dimensions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and most promising oxide-assisted catalyst-free method is used to prepare silicon nitride nanowires that give rise to high yield in a short time. After a brief analysis of the state of the art, we reveal the crucial role played by the oxygen partial pressure: when oxygen partial pressure is slightly below the threshold of passive oxidation, a high yield inhibiting the formation of any silica layer covering the nanowires occurs and thanks to the synthesis temperature one can control nanowire dimensions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis work proposes a new physical equivalent circuit model for a recently proposed semiconductor transistor, a 2-drain MSET (Multiple State Electrostatically Formed Nanowire Transistor). It presents a new software-based experimental setup that has been developed for carrying out numerical simulations on the device and on equivalent circuits. As of 2015, we have already approached the scaling limits of the ubiquitous CMOS technology that has been in the forefront of mainstream technological advancement, so many researchers are exploring different ideas in the realm of electrical devices for logical applications, among them MSET transistors. The idea that underlies MSETs is that a single multiple-terminal device could replace many traditional transistors. In particular a 2-drain MSET is akin to a silicon multiplexer, consisting in a Junction FET with independent gates, but with a split drain, so that a voltage-controlled conductive path can connect either of the drains to the source. The first chapter of this work presents the theory of classical JFETs and its common equivalent circuit models. The physical model and its derivation are presented, the current state of equivalent circuits for the JFET is discussed. A physical model of a JFET with two independent gates has been developed, deriving it from previous results, and is presented at the end of the chapter. A review of the characteristics of MSET device is shown in chapter 2. In this chapter, the proposed physical model and its formulation are presented. A listing for the SPICE model was attached as an appendix at the end of this document. Chapter 3 concerns the results of the numerical simulations on the device. At first the research for a suitable geometry is discussed and then comparisons between results from finite-elements simulations and equivalent circuit runs are made. Where points of challenging divergence were found between the two numerical results, the relevant physical processes are discussed. In the fourth chapter the experimental setup is discussed. The GUI-based environments that allow to explore the four-dimensional solution space and to analyze the physical variables inside the device are described. It is shown how this software project has been structured to overcome technical challenges in structuring multiple simulations in sequence, and to provide for a flexible platform for future research in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis has been devoted to the synthesis and investigation of functional properties of silicon carbide thin films and nanowires. The work took profit from the experience of the research group in the synthesis of 3C-SiC from vapour phase. 3C-SiC thin films Thin films heteroepitaxy on silicon substrates was carried out in a vapour phase epitaxy reactor. The initial efforts were committed to the process development in order to enhance the crystal quality of the epi-layer. The carbonization process and a buffer layer procedure were optimized in order to obtain good quality monocrystalline 3C-SiC layers. The films characterization was used not only to improve the entire process, but also to assess the crystalline quality and to identify the defects. Methyltrichlorosilane (MTS) was introduced during the synthesis to increase the growth rate and enhance crystalline quality. The effect of synthesis parameters such as MTS flow and process temperature was studied in order to promote defect density reduction and the release of the strain due to lattice mismatch between 3C-SiC and silicon substrate. In-growth n-type doping was implemented using a nitrogen gas line and the effect of different synthesis parameters on doping level was studied. Raman measurements allowed a contactless characterization and evaluation of electrically active dopant. The effect of MTS on nitrogen incorporation was investigated and a promotion of dopant concentration together with a higher growth rate were demonstrated. This result allows to obtain higher doping concentrations without deteriorating crystal quality in 3C-SiC and, to the best of our knowledge, it has never been demonstrated before. 3C-SiC nanowires Core-shell SiC-SiO2 nanowires were synthesized using a chemical vapour deposition technique in an open tube configuration reactor on silicon substrates. Metal catalyst were used to promote a uniaxial growth and a dense bundle of nanowires 100 µm long and 60 nm thick was obtained. Substrate preparation was found to be fundamental in order to obtain a uniform nanowire density. Morphological characterization was carried out using scanning electron microscopy and the analysis of structural, compositional, optical properties is reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we report new silicon and germanium tubular nanostructures with no corresponding stable carbon analogues. The electronic and mechanical properties of these new tubes were investigated through ab initio methods. Our results show that these structures have lower energy than their corresponding nanoribbon structures and are stable up to high temperatures (500 and 1000 K, for silicon and germanium tubes, respectively). Both tubes are semiconducting with small indirect band gaps, which can be significantly altered by both compressive and tensile strains. Large bandgap variations of almost 50% were observed for strain rates as small as 3%, suggesting their possible applications in sensor devices. They also present high Young's modulus values (0.25 and 0.15 TPa, respectively). TEM images were simulated to help in the identification of these new structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of annealing on the mechanical properties of high-silicon cast iron for three alloys with distinct chromium levels was investigated. Each alloy was melted either with or without the addition of Ti and Mg. These changes in the chemical composition and heat treatment aimed to improve the material's mechanical properties by inhibiting the formation of large columnar crystals, netlike laminae, precipitation of coarse packs of graphite, changing the length and morphology of graphite, and rounding the extremities of the flakes to minimize the stress concentration. For alloys with 0.07 wt.% Cr, the annealing reduced the impact resistance and tensile strength due to an enhanced precipitation of refined carbides and the formation of interdendritic complex nets. Annealing the alloys containing Ti and Mg led to a decrease in the mechanical strength and an increase in the toughness. Alloys containing approximately 2 wt.% Cr achieved better mechanical properties as compared to the original alloy. However, with the addition of Ti and Mg to alloys containing 2% Cr, the chromium carbide formation was inhibited, impairing the mechanical properties. In the third alloy, with 3.5 wt.% of Cr additions, the mechanical strength improved. The annealing promoted a decrease in both hardness and amount of iron and silicon complex carbides. However, it led to a chromium carbide formation, which influenced the mechanical characteristics of the matrix of the studied material.