967 resultados para Semiconductors - Optical properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of growth interruption (GI) on the optical properties of InAs/GaAs quantum dots was investigated by cw and time-resolved photoluminescence (PL). It is found that this effect depends very much on the growth conditions, in particular, the growth rate. In the case of low growth rate, we have found that the GI may introduce either red-shift or blue-shift in PL with increase of the interruption lime, depending on the InAs thickness. The observed red shift in our 1.7 monolayer (ML) sample is attributed to the evolution of the InAs islands during the growth interruption. While the blue-shift in the 3 ML sample is suggested to be mainly caused by the strain effect. In addition, nearly zero shift was observed for the sample with thickness around 2.5 ML, (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis reports on the optical properties of the dilute magnetic semiconductors, Sb1.97 V 0.03 Te3 and Sb1.94Cr0.06Te3, along with the parent compound Sb2Te3' These materials develop a ferromagnetic state at low temperature with Curie temperatures of 22 K and 16 K respectively. All three samples were oriented such that the electric field vector of the light was perpendicular to the c-axis. The reflectance profile of these samples in the mid-infrared (500 to 3000 cm-1) shows a pronounced plasma edge which retracts with decreasing temperature. The far-infrared region of these samples exhibits a phonon at ~ 60 cm-1 which softens as temperature decreases. Kramers-Kronig analysis and a Drude-Lorentz model were employed to determine the optical constants of the bulk samples. The real part of the optical conductivity is shown to consist of intraband contributions at frequencies below the energy gap (~0.26 eV) and interband contributions at frequencies above the energy gap. The temperature dependence of the scattering rate show that a mix of phonon and impurity scattering are present, while the signature of traditional spin disorder (magnetic) scattering was difficult to confirm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertically aligned ZnO nanorods have been grown on silicon substrates pre-coated with thin, less than 10 nm, textured ZnO seeding layers via a vapor-solid mechanism. The ZnO seeding layers, which were essential for vertical alignment of ZnO nanorods without using any metal catalyst, were prepared by decomposing zinc acetate. The structure and the luminescence properties of the ZnO nanorods synthesized onto ZnO seeding layers were investigated and their morphologies were compared with those of single-crystalline GaN substrates and silicon substrates covered with sputtered ZnO flms. Patterning of ZnO seed layers using photolithography allowed the fabrication of patterned ZnO-nanorod arrays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on ab initio numerical simulations of the effect of Co and Cu dopings on the electronic structure and optical properties of ZnO, pursued to develop diluted magnetic semiconductors vitally needed for spintronic applications. The simulations are based upon the Perdew-Burke-Enzerh generalized gradient approximation on the density functional theory. It is revealed that the electrons with energies close to the Fermi level effectively transfer only between Cu and Co ions which substitute Zn atoms, and are located in the neighbor sites connected by an O ion. The simulation results are consistent with the experimental observations that addition of Cu helps achieve stable ferromagnetism of Co-doped ZnO. It is shown that simultaneous insertion of Co and Cu atoms leads to smaller energy band gap, redshift of the optical absorption edge, as well as significant changes in the reflectivity, dielectric function, refractive index, and electron energy loss function of ZnO as compared to the doping with either Co or Cu atoms. These highly unusual optical properties are explained in terms of the computed electronic structure and are promising for the development of the next-generation room-temperature ferromagnetic semiconductors for future spintronic devices on the existing semiconductor micromanufacturing platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical activation energy and optical band-gap of GeSe and GeSbSe thin films prepared by flash evaporation on to glass substrates have been determined. The conductivities of the films were found to be given by Image , the activation energy Ea being 0.53 eV and 0.40 eV for GeSe and GeSbSe respectively. The optical absorption constant α near the absorption edge could be described by Image from which the optical band-gaps E0 were found to be 1.01 eV for GeSe and 0.67 eV for GeSbSe at 300°K. At 110°K the corresponding values of E0 were 1.07 eV and 0.735 eV respectively. The significance of these values is discussed in relation to those of other amorphous semiconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline Zn0.95 - xNi0.05AlxO (x = 0.01, 0.02, 0.05 and 0.10) diluted magnetic semiconductors have been synthesized by an auto-combustion method. X-ray diffraction measurements indicate that all Al-doped Zn0.95Ni0.05O samples have the pure wurtzite structure. Transmission electron microscope analyses show that the as-synthesized powders are of the size 40 - 45 nm. High-resolution transmission electron microscope, energy dispersive spectrometer and X-ray photoemission spectroscope analyses indicate that Ni2+ and Al3+ uniformly substitute Zn2+ in the wurtzite structure without forming any secondary phases. The Al doping concentration dependences of cell parameters (a and c), resistance and the ratio of green emission to UV emission have the similar trends. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InN nanostructures with and without GaN capping layers were grown by using metal-organic chemical vapor deposition. Morphological, structural, and optical properties were systematically studied by using atomic force microscopy, X-ray diffraction (XRD) and temperature-dependent photoluminescence (PL). XRD results show that an InGaN structure is formed for the sample with a GaN capping layer, which will reduce the quality and the IR PL emission of the InN. The lower emission peak at similar to 0.7 eV was theoretically fitted and assigned as the band edge emission of InN. Temperature-dependent PL shows a good quantum efficiency for the sample without a GaN capping layers; this corresponds to a lower density of dislocations and a small activation energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GaNAs/GaAs single quantum wells (SQWs) and dilute GaNAs bulk grown by molecular beam epitaxy(MBE) were studied by photoluminescence (PL), selectively-excited PL, and time-resolved PL. Exciton localization and delocalization were investigated in detail. Under short pulse laser excitation, the delocalization exciton emission was revealed in GaNAs/GaAs SQWs. It exhibits quite different optical properties from N-related localized states. In dilute GaNAs bulk, a transition of alloy band related recombination was observed by measuring the PL dependence on temperature and excitation intensity and time-resolved PL, as well. This alloy-related transition presents intrinsic optical properties. These results are very important for realizing the abnomal features of III-V-N semiconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical model accounting for the macropolarization effects in wurtzite III-V nitrides quantum wells (QWs) is presented. Energy dispersions and exciton binding energies are calculated within the framework of effective-mass theory and variational approach, respectively. Exciton-associated transitions (EATs) are studied in detail. An energy redshift as high as 450 meV is obtained in Al0.25GaN0.75/GaN QWs. Also, the abrupt reduction of optical momentum matrix elements is derived as a consequence of quantum-confined Stark effects. EAT energies are compared with recent photoluminescence (PL) experiments and numerical coherence is achieved. We propose that it is the EAT energy, instead of the conduction-valence-interband transition energy that is comparable with the PL energy. To restore the reduced transition rate, we apply an external electric field. Theoretical calculations show that with the presence of the external electric field the optical matrix elements for EAT increase 20 times. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The above work was supported by the national Basic Research Program of China (2006cb604904, 2006cb604908), the hi-tech R & D program of China (2006aa03z0408, 2006aa03z0404), the scientific research Fund of Central South University of Forstry and Technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New organic-inorganic perovskites with different PbBr perovskite sheets stabilized by 3- or 4-an-tidinopyridine were synthesized and structurally characterized. 4-Amidinopyridine constructs < 001 >-oriented perovskite with inorganic sheets made up of typical corner-sharing octahedra of PbBr2. Analogous chemistry in the presence of 3-amidinopyridine under the same conditions results in an unusual hybrid perovskite with the inorganic sheets showing a novel framework including both corner-sharing and edge-sharing PbBr2, which is different from any previously reported ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The < 110 >-oriented perovskite is very rare in the hybrid perovskites family. In this work, an unusual layered < 110 >-oriented hybrid perovskite, which is stabilized by a special organic ligand, 2-(aminoethyl)isothiourea, has been obtained. This ligand combines a primary amine and a formamidine on the two ends of one molecule. Introduction of the special ligand brings about contorted inorganic sheets in the hybrid perovskite structure. The optical properties of the new < 110 >-oriented perovskite were studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new series of film-forming, low-bandgap chromophores (1a,b and 2a,b) were rationally designed with aid of a computational study., and then synthesized and characterized. To realize absorption and emission above the 1000 nm wavelength, the molecular design focuses on lowering the LUMO level by fusing common heterocyclic units into a large conjugated core that acts an electron acceptor and increasing the charge transfer by attaching the multiple electron-donating groups at the appropriate positions of the acceptor core. The chromophores have bandgap levels of 1.27-0.71 eV, and accordingly absorb at 746-1003 nm and emit at 1035-1290 nm in solution. By design, the relatively high molecular weight (up to 2400 g mol(-1)) and non-coplanar structure allow these near-infrared (NIR) chromophores to be readily spin-coated as uniform thin films and doped with other organic semiconductors for potential device applications. Doping with [6,6]-phenyl-C-61 butyric acid methyl ester leads to a red shift in the absorption on]), for la and 2a. An interesting NIR electrochromism was found for 2a, with absorption being turned on at 1034 nm when electrochemically switched (at 1000 mV) from its neutral state to a radical cation state. Furthermore, a large Stokes shift (256-318 nm) is also unique for this multidonor-acceptor type of chromophore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Layered organic-inorganic composite materials (C5H10N3)PbX4 (X = Br 1, Cl 2) containing histaminium dications were grown via a solution-cooling process, and their structure and optical properties were determined. The organic ligand-histaminium introduced into the corner-sharing octahedra of the 'PbX4- layer' contains both primary ammonium and imidazolium different from the traditionally primary amine found in this system. As comparison, another analogous amine of 3-amino-1,2,4-triazol was used as ligand to coordinate with PbBr2 in acid solution. A novel complex (C2H2N4)PbBr3 (3) was obtained with zigzag PbBr2 chains different from the PbX4 layer in compound as 1 and 2. The hybrid (C5H10N3)PbX4 show exciton absorption at 339 nm for X = Cl and 419 nm for X = Br with the corresponding emission at 360 and 436 nm, respectively. The different PbBr2 chain structure of compound 3 does not show photo luminescence.