913 resultados para Secondary ion mass spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Física

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article outlines the basis of the technique and shows some examples of applications in order to exhibit the expectations of this technique invaried scientific fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recrystallization behavior of Cu films electrodeposited under oscillatory conditions in the presence of plating additives was studied by means of secondary ion mass spectrometry (SIMS) and focused ion beam analysis. When combined with bis-(sodium-sulfopropyl)-disulfide (SPS), Imep levelers (polymerizates of imidazole and epichlorohydrin) show characteristic oscillations in the galvanostatic potential/time transient measurements. These are related to the periodic degradation and restoration of the active leveler ensemble at the interface. The leveler action relies on adduct formation between the Imep and MPS (mercaptopropane sulfonic acid)-stabilized CuI complexes that appear as intermediates of the copper deposition when SPS is present in the electrolyte. SIMS depth profiling proves that additives are incorporated into the growing film preferentially under transient conditions during the structural breakdown of the leveler ensemble and its subsequent restoration. In contrast, Cu films electrodeposited in the presence of a structurally intact Imep–CuI–MPS ensemble remain largely contamination free.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconstructing the history of ambient levels of metals by using tree-ring chemistry is controversial. This controversy can be resolved in part through the use of selective microanalysis of individual wood cells. Using a combination of instrumental neutron activation analysis and secondary ion mass spectrometry, we have observed systematic inhomogeneity in the abundance of toxic metals (Cr, As, Cd, and Pb) within annual growth rings of Quercus rubra (red oak) and have characterized individual xylem members responsible for introducing micrometer-scale gradients in toxic metal abundances. These gradients are useful for placing constraints on both the magnitude and the mechanism of heavy metal translocation within growing wood. It should now be possible to test, on a metal-by-metal basis, the suitability of using tree-ring chemistries for deciphering long-term records of many environmental metals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An ion emitter consisting of a sharp silver tip covered in RbAg4I5 solid electrolyte film has been developed and studied. An accelerating potential is applied and Ag+ ions are emitted from the tip’s apex by field evaporation. The emitted ions are collected by a Faraday cup, producing a current on the pico/nanoampere level which is read by an electrometer. The tips were produced mechanically by sandpaper polishing. The sharpest tip produced had a 2:4 m apex radius. Two deposition methods were studied: thermal vacuum and pulsed laser deposition. The best tip produced a peak current value of 96nA at 180oC, and a quasi-stable 4nA emission current at 160oC, both using an extraction potential of 10kV . The emission dependence on time, temperature and accelerating potential has been studied. Deposited films were characterized by X-ray diffraction (XRD), profilometry, optical and Scanning Electron Microscope (SEM) and Secondary Ion Mass Spectroscopy (SIMS) measurements. Several ion emitters were developed, the latter ones were all able to maintain stable high ion emissions for long periods of time. This investigation was a continuation of an ongoing project backed by the European Space Agency, with the objective of making a proof of concept of this kind of ion emitter with potential application on ion thrusters for orbiting satellites. Going forward, it would be interesting to make a finer analysis of the electrolyte’s conductivity at high temperatures, explore Wien Effect-based emission and to further develop a multi-tip ion emitter prototype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of the third generation of photovoltaic devices, the intermediate band solar cell is one of the possible candidates to reach higher efficiencies with a lower processing cost. In this work, we introduce a novel processing method based on a double ion implantation and, subsequently, a pulsed laser melting (PLM) process to obtain thicker layers of Ti supersaturated Si. We perform ab initio theoretical calculations of Si impurified with Ti showing that Ti in Si is a good candidate to theoretically form an intermediate band material in the Ti supersaturated Si. From time-of-flight secondary ion mass spectroscopy measurements, we confirm that we have obtained a Ti implanted and PLM thicker layer of 135 nm. Transmission electron microscopy reveals a single crystalline structure whilst the electrical characterization confirms the transport properties of an intermediate band material/Si substrate junction. High subbandgap absorption has been measured, obtaining an approximate value of 104 cm−1 in the photons energy range from 1.1 to 0.6 eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform a structural and optical characterization of InAs1¿xNx epilayers grown by molecular beam epitaxy on InAs substrates x 2.2% . High-resolution x-ray diffraction HRXRD is used to obtain information about the crystal quality and the strain state of the samples and to determine the N content of the films. The composition of two of the samples investigated is also obtained with time-of-flight secondary ion mass spectroscopy ToF-SIMS measurements. The combined analysis of the HRXRD and ToF-SIMS data suggests that the lattice parameter of InAsN might significantly deviate from Vegard"s law. Raman scattering and far-infrared reflectivity measurements have been carried out to investigate the incorporation of N into the InAsN alloy. N-related local vibrational modes are detected in the samples with higher N content. The origin of the observed features is discussed. We study the compositional dependence of the room-temperature band gap energy of the InAsN alloy. For this purpose, photoluminescence and optical absorption measurements are presented. The results are analyzed in terms of the band-anticrossing BAC model. We find that the room-temperature coupling parameter for InAsN within the BAC model is CNM=2.0 0.1 eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose is the primary source of energy for the brain but also an important source of building blocks for proteins, lipids, and nucleic acids. Little is known about the use of glucose for biosynthesis in tissues at the cellular level. We demonstrate that local cerebral metabolic activity can be mapped in mouse brain tissue by quantitatively imaging the biosynthetic products deriving from [U-(13)C]glucose metabolism using a combination of in situ electron microscopy and secondary ion mass-spectroscopy (NanoSIMS). Images of the (13)C-label incorporated into cerebral ultrastructure with ca. 100nm resolution allowed us to determine the timescale on which the metabolic products of glucose are incorporated into different cells, their sub-compartments and organelles. These were mapped in astrocytes and neurons in the different layers of the motor cortex. We see evidence for high metabolic activity in neurons via the nucleus (13)C enrichment. We observe that in all the major cell compartments, such as e.g. nucleus and Golgi apparatus, neurons incorporate substantially higher concentrations of (13)C-label than astrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are presenting here p/n junctions obtained with a modified opened liquid-phase epitaxy (LPE) system, used to diffuse indium antimonide (InSb) doped with Cd over InSb doped with Te wafers, in order to make InSb infrared (IR) sensors. This technique has several advantages: the diffusion can be performed in bigger substrate areas improving the device production; this method decreases the device manipulation, decreasing human mistakes and increasing the process reproducibility. The opened LPE in this work produced sensors in the first case with vapor of the diffusion material, coming from a microholed carbon boat full of the diffusion material, over which is positioned the substrate at atmospheric pressure. In the second, the diffusion material is on the bottom of a quartz recipient, and the InSb/Te wafer works as its cover, and vacuum was used. The IR sensors produced with the first method measured 8.9 x 10(7) cm Hz(1/2)/W as detectivity value and higher IR spectral response at 4.6 mu m, and those produced with the second 2.8 x 10(9) cm Hz(1/2)/W, at 4.4 mu m. Besides the electrical-optical properties, the structural properties of diffused layers were investigated by X-ray diffraction (XRD), scanning electron and atomic force microscopy (SEM, AFM), energy-dispersive and secondary ion mass spectroscopy (EDS, SIMS). (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eumelanin is a ubiquitous pigment in the human body, animals, and plants, with potential for bioelectronic applications because of its unique set of physical and chemical properties, including strong UV-vis absorption, mixed ionic/electronic conduction, free radical scavenging and anti-oxidant properties. Herein, a detailed investigation is reported of eumelanin thin films grown on substrates patterned with gold electrodes as a model system for device integration, using electrical measurements, atomic force microscopy, scanning electron microscopy, fluorescence microscopy, and time-of-flight secondary ion mass spectroscopy. Under prolonged electrical biasing in humid air, one can observe gold dissolution and formation of gold-eumelanin nanoaggregates, the assembly of which leads to the formation of dendrites forming conductive pathways between the electrodes. Based on results collected with eumelanins from different sources, a mechanism is proposed for the formation of the nanoaggregates and dendrites, taking into account the metal binding properties of eumelanin. The surprising interaction between eumelanin and gold points to new opportunities for the fabrication of eumelanin-gold nanostructures and biocompatible memory devices and should be taken into account in the design of devices based on eumelanin thin films. © 2013 WILEY-VCH Verlag GmbH & Co.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The changes undergone by the Si surface after oxygen bombardment have special interest for acquiring a good understanding of the Si+-ion emission during secondary ion mass spectrometry (SIMS) analysis. For this reason a detailed investigation on the stoichiometry of the builtup surface oxides has been carried out using in situ x-ray photoemission spectroscopy (XPS). The XPS analysis of the Si 2p core level indicates a strong presence of suboxide chemical states when bombarding at angles of incidence larger than 30°. In this work a special emphasis on the analysis and interpretation of the valence band region was made. Since the surface stoichiometry or degree of oxidation varies with the angle of incidence, the respective valence band structures also differ. A comparison with experimentally measured and theoretically derived Si valence band and SiO2 valence band suggests that the new valence bands are formed by a combination of these two. This arises from the fact that Si¿Si bonds are present on the Si¿suboxide molecules, and therefore the corresponding 3p-3p Si-like subband, which extends towards the Si Fermi level, forms the top of the respective new valence bands. Small variations in intensity and energy position for this subband have drastic implications on the intensity of the Si+-ion emission during sputtering in SIMS measurements. A model combining chemically enhanced emission and resonant tunneling effects is suggested for the variations observed in ion emission during O+2 bombardment for Si targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elemental distribution for as-received (AR), H implanted (AI) and post-implanted annealed (A) Eurofer and ODS-Eurofer steels has been characterized by means of micro Particle Induced X-ray Emission (μ-PIXE), micro Elastic Recoil Detection (μ-ERD) and Secondary Ion Mass Spectrometry (SIMS). The temperature and time-induced H diffusion has been analyzed by Resonance Nuclear Reaction Analysis (RNRA), Thermal Desorption Spectroscopy (TDS), ERDA and SIMS techniques. μ-PIXE measurements point out the presence of inhomogeneities in the Y distribution for ODS-Eurofer samples. RNRA and SIMS experiments evidence that hydrogen easily outdiffuses in these steels even at room temperature. ERD data show that annealing at temperatures as low as 300 °C strongly accelerates the hydrogen diffusion process, driving out up to the 90% of the initial hydrogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material with potential to replace lead zirconate titanate (PZT),1 however high leakage conductivity for the material has been widely reported.2 Through a combination of Impedance Spectroscopy (IS), O2- ion transference (EMF) number experiments and O18 tracer diffusion measurements, combined with Time-of-flight Secondary Ion Mass Spectrometry (TOFSIMS), it was identified that this leakage conductivity was due to oxygen ion conductivity. The volatilization of bismuth during synthesis, causing oxygen vacancies, is believed to be responsible for the leakage conductivity.3 The oxide-ion conductivity, when doped with magnesium, exceeds that of yttria-stabilized zirconia (YSZ) at ~500 °C,3 making it a potential electrolyte material for Intermediate Temperature Solid Oxide Cells (ITSOCs). Figure 1 shows the comparison of bulk oxide ion conductivity between 2 at.% Mg-doped NBT and other known oxide ion conductors.

As part of the UK wide £5.7m 4CU project, research has concentrated on trying to develop NBT for use in Intermediate Temperature Solid Oxide Cells (ITSOCS). With the aim of achieving mixed ionic and electronic conduction, transition metals were chemically doped on to the Ti-site. A range of experimental techniques was used to characterize the materials aimed at investigating both conductivity and material structure (Scanning Electron Microscopy (SEM), IS, X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS)). The potential for NBT as an ITSOC material, as well as the challenges of developing the material, will be discussed.

(1) Takenaka T. et al. Jpn. J. Appl. Phys 1999, 30, 2236.

(2) Hiruma Y. et al. J. Appl. Phys 2009, 105, 084112.

(3) Li. M. et al. Nature Materials 2013, 13, 31.