990 resultados para Schrödinger operator
Resumo:
We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First, we assume that the electric potentials are dilation-analytic with respect to the variable along the magnetic field, and obtain an asymptotic expansion of the resonances as the coupling constant ϰ of the perturbation tends to zero. Further, under the assumption that the Fermi Golden Rule holds true, we deduce estimates for the time evolution of the resonance states with and without analyticity assumptions; in the second case we obtain these results as a corollary of suitable Mourre estimates and a recent article of Cattaneo, Graf and Hunziker [11]. Next, we describe sets of perturbations V for which the Fermi Golden Rule is valid at each embedded eigenvalue of H; these sets turn out to be dense in various suitable topologies. Finally, we assume that V decays fast enough at infinity and is of definite sign, introduce the Krein spectral shift function for the operator pair (H+V, H), and study its singularities at the energies which coincide with eigenvalues of infinite multiplicity of the unperturbed operator H.
Resumo:
La tesi ripercorre i procedimenti utilizzati per il calcolo dell'asintotica dello splitting dell'operatore puramente magnetico di Schrödinger nel limite semiclassico (con campo magnetico costante) in un dominio aperto limitato e semplicemente connesso il cui bordo ha simmetria assiale ed esattamente due punti di curvatura massima non degeneri. Il punto di partenza è trovare stime a priori sulle sue autofunzioni, che permettono di dire che sono localizzate esponenzialmente vicino al bordo del dominio in oggetto, grazie a queste stime di riesce a modificare l'operatore in maniera tale che l'asintotica dello splitting rimanga equivalente. Si passa in seguito a coordinate tubulari, quindi si rettifica il borso del dominio, andando però a complicare il potenziale magnetico. Si ottengono nuove stime a priori per le autofunzioni. A questo punto si considera lo stesso operatore differenziale ma su un dominio modificato, in cui viene eliminato uno dei punti di curvatura massima. Per tale operatore si ha uno sviluppo asintotico delle autofunzioni (anche dette soluzioni WKB). Si utilizzano poi strumenti di calcolo pseudo-differenziale per studiare l'operatore nel nuovo dominio, ne si localizza la fase per renderlo limitato ed ottenere così una parametrice (anch'essa limitata) avente un simbolo esplicito. Se ne deducono stime di tipo ellittico che possono essere portate all'operatore senza la fase localizzata aggiungendo dei termini di errore. Grazie queste stime si riesce ad approssimare lo splitting (controllando sempre l'errore) che volevamo calcolare (quello dell'operatore sul dominio con due punti di curvatura massima) tramite le autofunzioni dell'operatore sul dominio con un solo punto di curvatura massima, e per queste autofunzioni abbiamo lo sviluppo asintotico (WKB). Considerando l'ordine principale di questi sviluppi si riesce a calcolare esplicitamente il termine dominante dello splitting, ottenendone così l'asintotica nel limite semiclassico.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The scalar Schrödinger equation models the probability density distribution for a particle to be found in a point x given a certain potential V(x) forming a well with respect to a fixed energy level E_0. Formally two real inversion points a,b exist such that V(a)=V(b)=E_0, V(x)<0 in (a,b) and V(x)>0 for xb. Following the work made by D.Yafaev and performing a WKB approximation we obtain solutions defined on specific intervals. The aim of the first part of the thesis is to find a condition on E, which belongs to a neighbourhood of E_0, such that it is an eigenvalue of the Schrödinger operator, obtaining in this way global and linear dependent solutions in L2. In quantum mechanics this condition is known as Bohr-Sommerfeld quantization. In the second part we define a Schrödinger operator referred to two potential wells and we study the quantization conditions on E in order to have a global solution in L2xL2 with respect to the mutual position of the potentials. In particular their wells can be disjoint,can have an intersection, can be included one into the other and can have a single point intersection. For these cases we refer to the works of A.Martinez, S. Fujiié, T. Watanabe, S. Ashida.
Resumo:
In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schrödinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.
Resumo:
We show that the non-embedded eigenvalues of the Dirac operator on the real line with complex mass and non-Hermitian potential V lie in the disjoint union of two disks, provided that the L1-norm of V is bounded from above by the speed of light times the reduced Planck constant. The result is sharp; moreover, the analogous sharp result for the Schrödinger operator, originally proved by Abramov, Aslanyan and Davies, emerges in the nonrelativistic limit. For massless Dirac operators, the condition on V implies the absence of non-real eigenvalues. Our results are further generalized to potentials with slower decay at infinity. As an application, we determine bounds on resonances and embedded eigenvalues of Dirac operators with Hermitian dilation-analytic potentials.
Resumo:
We consider one-dimensional Schrödinger-type operators in a bounded interval with non-self-adjoint Robin-type boundary conditions. It is well known that such operators are generically conjugate to normal operators via a similarity transformation. Motivated by recent interests in quasi-Hermitian Hamiltonians in quantum mechanics, we study properties of the transformations and similar operators in detail. In the case of parity and time reversal boundary conditions, we establish closed integral-type formulae for the similarity transformations, derive a non-local self-adjoint operator similar to the Schrödinger operator and also find the associated “charge conjugation” operator, which plays the role of fundamental symmetry in a Krein-space reformulation of the problem.
Resumo:
2000 Mathematics Subject Classification: Primary: 34B40; secondary: 35Q51, 35Q53
Resumo:
2002 Mathematics Subject Classification: 35L05, 34L15, 35D05, 35Q53
Resumo:
2000 Mathematics Subject Classification: 35P25, 81U20, 35S30, 47A10, 35B38.
Resumo:
The aim of this master thesis is to study the exponential decay of solutions of elliptic partial equations. This work is based on the results obtained by Agmon. To this purpose, first, we define the Agmon metric, that plays an important role in the study of exponential decay, because it is related to the rate of decay. Under some assumptions on the growth of the function and on the positivity of the quadratic form associated to the operator, a first result of exponential decay is presented. This result is then applied to show the exponential decay of eigenfunctions with eigenvalues whose real part lies below the bottom of the essential spectrum. Finally, three examples are given: the harmonic oscillator, the hydrogen atom and a Schrödinger operator with purely discrete spectrum.
Resumo:
Neste trabalho, estudamos propriedades de continuação única para as soluções da equação tipo Schrödinger com um ponto interação centrado em x=0, \\partial_tu=i(\\Delta_Z+V)u, onde V=V(x,t) é uma função de valor real e -\\Delta_Z é o operador escrito formalmente como \\[-\\Delta_Z=-\\frac\\frac{d^2}{dx^2}+Z\\delta_0,\\] sendo \\delta_0 a delta de Dirac centrada em zero e Z qualquer número real. Logo, usamos estes resultados para ver o possível fenômeno de concentração das soluções, que explodem, da equação de tipo Schrödinger não linear com um ponto de interação em x=0, \\[\\partial_tu=i(\\Delta_Zu+|u|^u),\\] com ho>5. Também, mostramos que para certas condições sobre o potencial dependente do tempo V, a equação linear em cima tem soluções não triviais.
Resumo:
Георги Венков, Христо Генев - Разглеждаме един клас от L^2 - критични нелинейни уравнения на Шрьодингер в R^(1+n) с конволюционна нелинейност от тип Хартри. Целта ни е да установим локалното и глобално съществуване на решенията, както и коректност на задачата на Коши в достатъчно малка околност на нулата в пространството L^2 (R^n). Като естествено следствие на глобалните резултати ние доказваме съществуване на оператор на разсейване за малки начални условия.