La metrica di Agmon ed il decadimento esponenziale delle soluzioni di equazioni alle derivate parziali
Resumo |
The aim of this master thesis is to study the exponential decay of solutions of elliptic partial equations. This work is based on the results obtained by Agmon. To this purpose, first, we define the Agmon metric, that plays an important role in the study of exponential decay, because it is related to the rate of decay. Under some assumptions on the growth of the function and on the positivity of the quadratic form associated to the operator, a first result of exponential decay is presented. This result is then applied to show the exponential decay of eigenfunctions with eigenvalues whose real part lies below the bottom of the essential spectrum. Finally, three examples are given: the harmonic oscillator, the hydrogen atom and a Schrödinger operator with purely discrete spectrum. |
---|---|
Formato |
application/pdf |
Identificador |
http://amslaurea.unibo.it/11437/1/tesi.pdf Saccoletto, Marta (2016) La metrica di Agmon ed il decadimento esponenziale delle soluzioni di equazioni alle derivate parziali. [Laurea magistrale], Università di Bologna, Corso di Studio in Matematica [LM-DM270] <http://amslaurea.unibo.it/view/cds/CDS8208/>, Documento ad accesso riservato. |
Idioma(s) |
it |
Relação |
http://amslaurea.unibo.it/11437/ |
Direitos |
studio_ricerca |
Tipo |
Tesi di laurea NonPeerReviewed |