Eigenvalue estimates for non-selfadjoint Dirac operators on the real line


Autoria(s): Cuenin, Jean-Claude; Laptev, Ari; Tretter, Christiane
Data(s)

2014

Resumo

We show that the non-embedded eigenvalues of the Dirac operator on the real line with complex mass and non-Hermitian potential V lie in the disjoint union of two disks, provided that the L1-norm of V is bounded from above by the speed of light times the reduced Planck constant. The result is sharp; moreover, the analogous sharp result for the Schrödinger operator, originally proved by Abramov, Aslanyan and Davies, emerges in the nonrelativistic limit. For massless Dirac operators, the condition on V implies the absence of non-real eigenvalues. Our results are further generalized to potentials with slower decay at infinity. As an application, we determine bounds on resonances and embedded eigenvalues of Dirac operators with Hermitian dilation-analytic potentials.

Formato

application/pdf

Identificador

http://boris.unibe.ch/66708/1/art%253A10.1007%252Fs00023-013-0259-3.pdf

Cuenin, Jean-Claude; Laptev, Ari; Tretter, Christiane (2014). Eigenvalue estimates for non-selfadjoint Dirac operators on the real line. Annales Henri Poincaré, 15(4), pp. 707-736. Springer 10.1007/s00023-013-0259-3 <http://dx.doi.org/10.1007/s00023-013-0259-3>

doi:10.7892/boris.66708

info:doi:10.1007/s00023-013-0259-3

urn:issn:1424-0637

Idioma(s)

eng

Publicador

Springer

Relação

http://boris.unibe.ch/66708/

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Cuenin, Jean-Claude; Laptev, Ari; Tretter, Christiane (2014). Eigenvalue estimates for non-selfadjoint Dirac operators on the real line. Annales Henri Poincaré, 15(4), pp. 707-736. Springer 10.1007/s00023-013-0259-3 <http://dx.doi.org/10.1007/s00023-013-0259-3>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed