707 resultados para SUBTELOMERIC REARRANGEMENTS
Resumo:
Conventional karyotyping detects anomalies in 3-15% of patients with multiple congenital anomalies and mental retardation (MCA/MR). Whole-genome array screening (WGAS) has been consistently suggested as the first choice diagnostic test for this group of patients, but it is very costly for large-scale use in developing countries. We evaluated the use of a combination of Multiplex Ligation-dependent Probe Amplification (MLPA) kits to increase the detection rate of chromosomal abnormalities in MCA/MR patients. We screened 261 MCA/MR patients with two subtelomeric and one microdeletion kits. This would theoretically detect up to 70% of all submicroscopic abnormalities. Additionally we scored the de Vries score for 209 patients in an effort to find a suitable cut-off for MLPA screening. Our results reveal that chromosomal abnormalities were present in 87 (33.3%) patients, but only 57 (21.8%) were considered causative. Karyotyping detected 15 abnormalities (6.9%), while MLPA identified 54 (20.7%). Our combined MLPA screening raised the total detection number of pathogenic imbalances more than three times when compared to conventional karyotyping. We also show that using the de Vries score as a cutoff for this screening would only be suitable under financial restrictions. A decision analytic model was constructed with three possible strategies: karyotype, karyotype + MLPA and karyotype + WGAS. Karyotype + MLPA strategy detected anomalies in 19.8% of cases which account for 76.45% of the expected yield for karyotype + WGAS. Incremental Cost Effectiveness Ratio (ICER) of MLPA is three times lower than that of WGAS, which means that, for the same costs, we have three additional diagnoses with MLPA but only one with WGAS. We list all causative alterations found, including rare findings, such as reciprocal duplications of regions deleted in Sotos and Williams-Beuren syndromes. We also describe imbalances that were considered polymorphisms or rare variants, such as the new SNP that confounded the analysis of the 22q13.3 deletion syndrome. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
We report on two patients with de novo subtelomeric terminal deletion of chromosome 6p. Patient 1 is an 8-month-old female born with normal growth parameters, typical facial features of 6pter deletion, bilateral corectopia, and protruding tongue. She has severe developmental delay, profound bilateral neurosensory deafness, poor visual contact, and hypsarrhythmia since the age of 6 months. Patient 2 is a 5-year-old male born with normal growth parameters and unilateral hip dysplasia; he has a characteristic facial phenotype, bilateral embryotoxon, and moderate mental retardation. Further characterization of the deletion, using high-resolution array comparative genomic hybridization (array-CGH; Agilent Human Genome kit 244 K), revealed that Patient 1 has a 8.1 Mb 6pter-6p24.3 deletion associated with a contiguous 5.8 Mb 6p24.3-6p24.1 duplication and Patient 2 a 5.7 Mb 6pter-6p25.1 deletion partially overlapping with that of Patient 1. Complementary FISH and array analysis showed that the inv del dup(6) in Patient 1 originated de novo. Our results demonstrate that simple rearrangements are often more complex than defined by standard techniques. We also discuss genotype-phenotype correlations including previously reported cases of deletion 6p.
Resumo:
Five distinct pathways for the reaction of isoxazol-5(2H)-ones with bases or nucleophiles have been reported, and are detailed herein. That investigated in greatest detail, and of greatest application in heterocyclic synthesis, is that of isoxazolones unsubstituted at C-3, in which the sequentially formed ketenimine, alpha-lactone and ketene may all react with a nucleophile.
Resumo:
Rearrangements of 1p36 are the most frequently detected abnormalities in diagnostic testing for chromosomal cryptic imbalances and include variably sized simple terminal deletions, derivative chromosomes, interstitial deletions, and complex rearrangements. These rearrangements result in the specific pattern of malformation and neurodevelopmental disabilities that characterizes monosomy 1p36 syndrome. Thus far, no individual gene within this region has been conclusively determined to be causative of any component of the phenotype. Nor is it known if the rearrangements convey phenotypes via a haploinsufficiency mechanism or through a position effect. We have used multiplex ligation-dependent probe amplification to screen for deletions of 1p36 in a group of 154 hyperphagic and overweight/obese, PWS negative individuals, and in a separate group of 83 patients initially sent to investigate a variety of other conditions. The strategy allowed the identification and delineation of rearrangements in nine subjects with a wide spectrum of clinical presentations. Our work reinforces the association of monosomy 1p36 and obesity and hyperphagia, and further suggests that these features may be associated with non-classical manifestations of this disorder in addition to a submicroscopic deletion of similar to 2-3 Mb in size. Multiplex ligation probe amplification using the monosomy 1p36 syndrome-specific kit coupled to the subtelomeric kit is an effective approach to identify and delineate rearrangements at 1p36. (C) 2009 Wiley-Liss, Inc.
Resumo:
We present the first comprehensive study, to our knowledge, on genomic chromosomal analysis in syndromic craniosynostosis. In total, 45 patients with craniosynostotic disorders were screened with a variety of methods including conventional karyotype, microsatellite segregation analysis, subtelomeric multiplex ligation-dependent probe amplification) and whole-genome array-based comparative genome hybridisation. Causative abnormalities were present in 42.2% (19/45) of the samples, and 27.8% (10/36) of the patients with normal conventional karyotype carried submicroscopic imbalances. Our results include a wide variety of imbalances and point to novel chromosomal regions associated with craniosynostosis. The high incidence of pure duplications or trisomies suggests that these are important mechanisms in craniosynostosis, particularly in cases involving the metopic suture.
Resumo:
Meningiomas are recognized as the most common late complication following radiotherapy. However, cytogenetic studies in childhood atypical radiation-induced meningioma are sporadic, mainly because this condition generally occurs after a long latent period. In the present study we show the results of conventional and molecular cytogenetics in a 14-year-old boy with a secondary atypical meningioma. Apart from numerical changes, we found complex aberrations with the participation of chromosomes 1, 6 and 12. The invariable presence of loss of 1p was demonstrated by fluorescent in situ hybridization (FISH) analysis with probes directed to telomeric regions and by comparative genome hybridization (CGH). Previous cytogenetic studies on adult spontaneous and radiation-associated meningiomas showed loss of chromosome 22 as the most frequent change, followed by loss of the short arm of chromosome 1. To the best of our knowledge this is the first report of highly complex chromosome aberrations in the pediatric setting of meningioma.
Resumo:
Background Imunoglobulin (Ig) and T cell receptor (TCR) gene rearrangements function as specific markers for minimal residual disease (MRD) which is one of the best predictors of outcome in childhood acute lymphoblastic leukemia (ALL) We recently reported on the prognostic value of MRD during the induction of remission through a simplified PCR method Here we report on gene rearrangement frequencies and offer guidelines for the application of the technique Procedure Two hundred thirty three children had DNA extracted from bone marrow Ig and TCR gene rearrangements were amplified using consensus primers and conventional PCR PCR products were submitted to homo/heteroduplex analysis A computer program was designed to define combinations of targets for clonal detection using a minimum set of primers and reactions Results At least one clonal marker could be detected in 98% of the patients and two markers in approximately 80% The most commonly rear ringed genes in precursor B cell ALL were IgH (75%) TCRD (59%) IgK (55%), and TCRG (54%) The most commonly rearranged genes for TALL were TCRG (100%) and TCRD (24%) The sensitivity of primers was limited to the detection of 1 leukemic cell among 100 normal cells Conclusions We propose that eight PCR reactions per ALL subtype would allow for the detection of two markers in most cases In addition these reactions ire suitable for MRD monitoring especially when aiming the selection of patients with high MRD levels (>= 10(-2)) at the end of induction therapy Such an approach would be very useful in centers with limited financial resources Pediatr Blood Cancer 2010 55 1278-1286 (C) 2010 Wiley Liss Inc
Resumo:
The successful treatment of paediatric malignancies by multimodal therapy has improved outcomes for children with cancer, especially those with acute lymphoblastic leukaemia (ALL). Second malignant neoplasms, however, represent a serious complication after treatment. Depending on dosage, 2-12% of patients treated with topoisomerase II inhibitors and/or alkylating agents develop treatment-related acute myeloid leukaemia characterized by translocations at 11q23. Our goal was to study MLL rearrangements in peripheral lymphocytes using cytogenetic and molecular methods in order to evaluate the late effects of cancer therapy in patients previously treated for childhood ALL. Chromosomal rearrangements at 11q23 were analysed in cytogenetic preparations from 49 long-term ALL survivors and 49 control individuals. Patients were subdivided depending on the inclusion or omission of topoisomerase II inhibitors (VP-16 and/or VM-26) in their treatment protocol. The statistical analysis showed significant (P = 0.007) differences between the frequency of translocations observed for the groups of patients and controls. These differences were also significant (P = 0.006) when the groups of patients (independent of the inclusion of topoisomerase II inhibitors) and controls were compared (P = 0.006). The frequencies of extra signals, however, did not differ between groups of patients and controls. Several MLL translocations were detected and identified by inverse polymerase chain reaction, followed by cloning and sequencing. Thirty-five patients (81%) presented putative translocations; among those, 91% corresponded with t(4;11) (q21;q23), while the other 9% corresponded with t(11;X), t(8;11)(q23;q23) and t(11;16). Our results indicate an increase in MLL aberrations in childhood ALL survivors years after completion of therapy. The higher frequency in this cohort might be associated with therapy using anti-tumoural drugs, independent of the inclusion of topoisomerase II inhibitors. Even though the biological significance of these rearrangements needs further investigation, they demonstrate a degree of genome instability, indicating the relevance of cytogenetic and molecular studies during the follow-up of patients in complete clinical remission.
Resumo:
The complete arrangement of genes in the mitochondrial (mt) genome is known for 12 species of insects, and part of the gene arrangement in the mt genome is known for over 300 other species of insects. The arrangement of genes in the mt genome is very conserved in insects studied, since all of the protein-coding and rRNA genes and most of the tRNA genes are arranged in the same way. We sequenced the entire mt genome of the wallaby louse, Heterodoxus macropus, which is 14,670 bp long and has the 37 genes typical of animals and some noncoding regions. The largest noncoding region is 73 bp long (93% A+T), and the second largest is 47 bp long (92% AST). Both of these noncoding regions seem to be able to form stem-loop structures. The arrangement of genes in the mt genome of this louse is unlike that of any other animal studied. All tRNA genes have moved and/or inverted relative to the ancestral gene arrangement of insects, which is present in the fruit fly Drosophila yakuba. At least nine protein-coding genes (atp6, atp8, cox2, cob, nad1-nad3, nad5, and nad6) have moved; moreover, four of these genes (atp6, atp8, nad1, and nad3) have inverted. The large number of gene rearrangements in the mt genome of H. macropus is unprecedented for an arthropod.
Resumo:
B3LYP/6-31G(d) calculations of structures, energies, and infrared spectra of several rearrangement products of (hetero)aromatic nitrenes and carbenes are reported. 3-Isoquinolylnitrene 36 ring closes to the azirine 37 prior to ring expansion to the potentially stable but unobserved seven-membered-ring carbodiimide 38 and diazacycloheptatrienylidene C-s-39S. A new, stable cycloheptatrienylidene, C-s-19S, is located on the naphthylcarbene energy surface. 4-Quinolylnitrene undergoes reaction via the azirine 50 in solution, but ring expansion to the stable seven-membered-ring ketenimine 47 under Ar matrix photolysis conditions. There is excellent agreement between calculated infrared spectra of 1,5-diazacyclohepta-1,2,4,6-tetraene 54 (obtained by photolysis of 4-pyridyl azide), 1-azacyclohepta-1,2,4,6-tetraene 5, 1-azacyclohepta-1,3,5,6-tetraene 55, and 1-azacyclohepta-1,3,4,6-tetraene 56 and the available experimental data.
Resumo:
Flash vacuum thermolysis (FVT) of 1-(dimethylamino)pyrrole-2,3-diones 5 causes extrusion of CO with formation of transient hydrazonoketenes 7. The transient ketenes 7 are observable in the form of weak bands at 2130 (7a) or 2115 cm(-1) (7b) in the Ar matrix IR spectra resulting from either FVT or photolysis of either 5 or 1,1- dimethylpyrazolium-5- oxides 8, and these absorptions are in excellent agreement with B3LYP/6-31G* frequency calculations. Under FVT conditions the ketenes 7 cyclize to pyrazolium oxides 8, which undergo 1,4-migration of a methyl group to yield 1,4-dimethyl-3-phenylpyrazole-5(4H)-one 9a and 1,4,4-trimethyl-3-phenylpyrazole-5(4H)-one 9b. All three tautomers of 9a have been characterized, viz. the CH form 9a (most stable form in the gas phase, the solid state and solvents of low polarity), the OH form 9a' (metastable solid at room temperature) and the NH form 9a (stable in aprotic dipolar solvents). The isomeric 1,4-dimethyl-5-phenylpyrazole-3(2H)-one 12 tautomerizes to the 3-hydroxypyrazole 12'. The crystal structure of the hydrochloride 14 of 9a'/9a is reported, representing the first structurally characterised example of a protonated 5-hydroxypyrazole.
Resumo:
The first examples of low temperature N-oxy-3-aza Cope rearrangements, leading to functionalised allenes are described, where the Z-configuration of the enaminic double bond in the rearranging system proves critical.
Resumo:
On thermolysis appropriately substituted N-silyloxy-N-allyl enamines undergo smooth 3,3-sigmatropic rearrangments to the corresponding N-silyloxy imino ethers.
Resumo:
PURPOSE: To establish the Southern blotting technique using hybridization with a nonradioactive probe to detect large rearrangements of CYP21A2 in a Brazilian cohort with congenital adrenal hyperplasia due to 21-hydroxylase deficiency (CAH-21OH). METHOD: We studied 42 patients, 2 of them related, comprising 80 non-related alleles. DNA samples were obtained from peripheral blood, digested by restriction enzyme Taq I, submitted to Southern blotting and hybridized with biotin-labeled probes. RESULTS: This method was shown to be reliable with results similar to the radioactive-labeling method. We found CYP21A2 deletion (2.5%), large gene conversion (8.8%), CYP21AP deletion (3.8%), and CYP21A1P duplication (6.3%). These frequencies were similar to those found in our previous study in which a large number of cases were studied. Good hybridization patterns were achieved with a smaller amount of DNA (5 mug), and fragment signs were observed after 5 minutes to 1 hour of exposure. CONCLUSIONS: We established a non-radioactive (biotin) Southern blot/hybridization methodology for CYP21A2 large rearrangements with good results. Despite being more arduous, this technique is faster, requires a smaller amount of DNA, and most importantly, avoids problems with the use of radioactivity.
Resumo:
In liver, the glyoxylate cycle contributes to two metabolic functions, urea and glucose synthesis. One of the key enzymes in this pathway is glyoxylate reductase/hydroxypyruvate reductase (GRHPR) whose dysfunction in human causes primary hyperoxaluria type 2, a disease resulting in oxalate accumulation and formation of kidney stones. In this study, we provide evidence for a transcriptional regulation by the peroxisome proliferator-activated receptor alpha (PPARalpha) of the mouse GRHPR gene in liver. Mice fed with a PPARalpha ligand or in which PPARalpha activity is enhanced by fasting increase their GRHPR gene expression via a peroxisome proliferator response element located in the promoter region of the gene. Consistent with these observations, mice deficient in PPARalpha present higher plasma levels of oxalate in comparison with their wild type counterparts. As expected, the administration of a PPARalpha ligand (Wy-14,643) reduces the plasma oxalate levels. Surprisingly, this effect is also observed in null mice, suggesting a PPARalpha-independent action of the compound. Despite a high degree of similarity between the transcribed region of the human and mouse GRHPR gene, the human promoter has been dramatically reorganized, which has resulted in a loss of PPARalpha regulation. Overall, these data indicate a species-specific regulation by PPARalpha of GRHPR, a key gene of the glyoxylate cycle.