807 resultados para SECONDARY ALCOHOLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of enantiopure intermediates for drug synthesis is a trend in pharmaceutical industry. Different physiological effects are associated with the enantiomers of chiral molecules. Thus, the safety profile of a drug based on an enantiopure active pharmaceutical ingredient is more reliable. Biocatalysis is an important tool to access enantiopure molecules. In biocatalysis, the advantage of selectivity (chemo-, regio- and stereoselectivity) is combined with the benefits of a green synthesis strategy. Chemoenzymatic syntheses of drug molecules, obtained by combining biocatalysis with modern chemical synthesis steps usually consists of fewer reaction steps, reduced waste production and improved overall synthetic efficiency both in yields and enantio- and/or diastereoselectivities compared with classical chemical synthesis. The experimental work together with the literature review clearly indicates that lipase catalysis is highly applicable in the synthesis of enantiopure intermediates of drug molecules as the basis to infer the correct stereochemistry. By lipase catalysis, enantiopure secondary alcohols used as intermediates in the synthesis of Dorzolamide, an antiglaucoma drug, were obtained. Enantiopure _-hydroxy nitriles as potential intermediates for the synthesis of antidepressant drugs with 1-aryl-3- methylaminopropan-1-ol structure were also obtained with lipases. Kinetic resolution of racemates was the main biocatalytic approach applied. Candida Antarctica lipase B, Burkholderia cepacia lipase and Thermomyces lanuginosus lipase were applied for the acylation of alcohols and the alcoholysis of their esters in organic solvents, such as in diisopropyl ether and tert-butyl methyl ether. Candida Antarctica lipase B was used under solvent free conditions for the acylation of ethyl 3-hydroxybutanoate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biocatalysis can be applied in organic synthetic chemistry to counter challenges posed by increased demands towards chemo-, regio- and stereoselectivity, not forgetting the need for greener chemistry. During the last 30 years, biocatalysis with the use of enzymes as chiral catalysts has become more common in chemistry laboratories and industrial processes. In this thesis, the use of lipases as versatile biocatalysts in the acylation of alcohols is examined both in the light of literature examples and four original publications. In the first part of the work presented in this thesis lipases were utilized in two examples concerning secondary alcohols. First, the kinetic resolution of heterocyclic aromatic secondary alcohols through transesterification was thoroughly examined including the studies of competing hydrolysis and esterification reactions. In another example, lipases were utilized in the formation of a dynamic systemic resolution (DSR) process which in turn was used as a developmental tool in the optimization of the dynamic kinetic resolution (DKR) of five heterocyclic aromatic cyanohydrins in one pot for the preparation of cyanohydrin esters as single enantiomers. In the second part of the work, the regio- and stereoselectivity of lipases was used to form sugar conjugates of glyceric and β-amino acids. The primary hydroxyl groups of methyl α-D-galacto-, -gluco- and -mannopyranosides were now acylated trough lipasecatalyzed transesterification and enantioselective lipase-catalyzed ring-opening of β- lactams, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated Arthrobacter atrocyaneus (R1AF57) as producer of oxidoreductases for oxidative kinetic resolution of racemic secondary alcohols via oxidation reaction. This bacterium was isolated from Amazon soil samples using medium enriched with (RS)-1-(4-methylphenyl)ethanol as a carbon source. The kinetic resolution of several secondary alcohols through enantioselective oxidation mediated by resting cells and growing cells of A. atrocyaneus was efficiently achieved for the most alcohols. In general, it was possible to obtain only the (S)-enantiomer from (RS)-1-arylethanols.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two new metal- organic compounds {[Cu-3(mu(3)-4-(p)tz)(4)(mu(2)-N-3)(2)(DMF)(2)](DMF)(2)}(n) (1) and {[Cu(4ptz) (2)(H2O)(2)]}(n) (2) {4-ptz = 5-(4-pyridyl)tetrazolate} with 3D and 2D coordination networks, respectively, have been synthesized while studying the effect of reaction conditions on the coordination modes of 4-pytz by employing the [2 + 3] cycloaddition as a tool for generating in situ the 5-substituted tetrazole ligands from 4-pyridinecarbonitrile and NaN3 in the presence of a copper(II) salt. The obtained compounds have been structurally characterized and the topological analysis of 1 discloses a topologically unique trinodal 3,5,6-connected 3D network which, upon further simplification, results in a uninodal 8-connected underlying net with the bcu (body centred cubic) topology driven by the [Cu-3(mu(2)-N-3)(2)] cluster nodes and mu(3)-4-ptz linkers. In contrast, the 2D metal-organic network in 2 has been classified as a uninodal 4-connected underlying net with the sql [Shubnikov tetragonal plane net] topology assembled from the Cu nodes and mu(2)-4-ptz linkers. The catalytic investigations disclosed that 1 and 2 act as active catalyst precursors towards the microwave-assisted homogeneous oxidation of secondary alcohols (1-phenylethanol, cyclohexanol, 2-hexanol, 3-hexanol, 2-octanol and 3-octanol) with tert-butylhydroperoxide, leading to the yields of the corresponding ketones up to 86% (TOF = 430 h(-1)) and 58% (TOF = 290 h(-1)) in the oxidation of 1-phenylethanol and cyclohexanol, respectively, after 1 h under low power ( 10 W) microwave irradiation, and in the absence of any added solvent or additive.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aroylhydrazone oxidovanadium compounds, viz, the oxidoethoxidovanadium(V) [VO(OEt)L1] (1) (H2L =salicylaldehyde-2-hydroxybenzoylhydrazone), the salt like dioxidovanadium(V) (NH3CH2CH2OH)(+) [VO2L](-) (2), the mixed-ligand oxidovanadium(V) [VO(hq)L](Hhq = 8-hydroxyquinoline) (3) and the vanadium(IV) [VO(phen)L] (phen=1,10-phenanthroline) (4) complexes (3 and 4 obtained by the first time), have been tested as catalysts for solvent-free microwave-assisted oxidation of aromatic and alicyclic secondary alcohols with tert-butylhydroperoxide. A facile, efficient and selective solvent-free synthesis of ketones was achieved with yields up to 99% (TON= 497, TOF= 993 h(-1) for 3) and 58% (TON =291, TOF= 581 h(-1) for 2) for acetophenone and cyclohexanone, respectively, after 30 min under low power (25W) microwave irradiation. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A one-pot template reaction of sodium 2-(2-(dicyanomethylene) hydrazinyl) benzenesulfonate (NaHL1) with water and manganese(II) acetate tetrahydrate led to the mononuclear complex [Mn(H2O)(6)](HL1a)(2)center dot 4H(2)O (1), where (HL1a) -= 2-(SO3-)C6H4(NH)=N=C(C N) (CONH2) is the carboxamide species derived from nucleophilic attack of water on a cyano group of (HL1) . The copper tetramer [Cu-4(H2O)(10)(-) (1 kappa N: kappa O-2: kappa O, 2 kappa N: k(O)-L-2)(2)]center dot 2H(2)O (2) was obtained from reaction of Cu(NO3)(2)center dot 2.5H(2)O with sodium 5-(2( 4,4-dimethyl-2,6-dioxocyclohexylidene) hydrazinyl)-4-hydroxybenzene-1,3-disulfonate (Na2H2L2). Both complexes were characterized by elemental analysis, IR spectroscopy, ESI-MS and single crystal X-ray diffraction. They exhibit a high catalytic activity for the solvent-and additive-free microwave (MW) assisted oxidation of primary and secondary alcohols with tert-butylhydroperoxide, leading to yields of the oxidized products up to 85.5% and TOFs up to 1.90 x 103 h(-1) after 1 h under low power (5-10 W) MW irradiation. Moreover, the heterogeneous catalysts are easily recovered and reused, at least for three consecutive cycles, maintaining 89% of the initial activity and a high selectivity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The selective catalytic oxidation of alcohols over a mixture of copper(l) chloride and a number of linear 'linker-less' or 'branched' poly(ethylene glycol)-supported nitroxyl radicals of the 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) family as a catalyst system has been investigated in the presence of molecular oxygen in a batch reactor. It is found that the activity profile of the polymer-supported nitroxyl radicals is in good agreement with that of low-molecular weight nitroxyl catalysts, for example, allylic and benzylic alcohols are oxidised faster than aliphatic alcohols. The oxidations can be tuned to be highly selective such that aldehydes are the only oxidation products observed in the oxidation of primary alcohols and the oxidations of secondary alcohols yield the corresponding ketones. A strong structural effect of the polymeric nitroxyl species on catalytic activity that is dependent upon their spatial orientation of the nitroxyl radicals is particularly noted. The new soluble macromolecular catalysts can be recovered readily from the reaction mixture by solvent precipitation and filtration. In addition, the recycled catalysts demonstrate a similar selectivity with only a small decrease in activity compared to the fresh catalyst even after five repetitive cycles. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The direct alkylation of indoles using KOH and alcohols, as initial source of the electrophile, under solvent-free conditions is a safe and environmentally benign strategy for selective modification of these structures at the C3-position, without using hazardous and difficult to handle bromide or iodide derivatives or toxic and expensive transition metal catalysts. The protocol shows a broad scope, including halogenated indoles and secondary alcohols.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Secondary alcohol concentrations in sugar cane spirits from different origins were determined by gas chromatography. A great variation in the concentration of the secondary alcohols was found in these spirits. Of the 33 brands analyzed, 8 of them were found to be out of conformity with the legislation. Sec butanol, for which the maximum allowed concentration level is 100 mg.L-1 in absolute ethanol, was found within a concentration range between 5 mg.L-1, the limit of quantitation (LQ) and 408 mg.L-1 in absolute ethanol. Sugar cane samples from Salinas, MG, were the only ones that exhibited self similarity because of the low concentrations of n-butanol and n-amylic alcohol (< limit of detection LD).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several microorganisms were isolated from soil/sediment samples of Antarctic Peninsula. The enrichment technique using (RS)-.1-(phenyl) ethanol as a carbon source allowed us to isolate 232 psychrophile/psychrotroph microorganisms. We also evaluated the enzyme activity (oxidoreductases) for enantioselective oxidation reactions, by using derivatives of (RS)-.1-(phenyl) ethanol as substrates. Among the studied microorganisms, 15 psychrophile/psychrotroph strains contain oxidoreductases that catalyze the (S)-.enantiomer oxidation from racemic alcohols to their corresponding ketones. Among the identified microorganisms, Flavobacterium sp. and Arthrobacter sp. showed excellent enzymatic activity. These new bacteria strains were selected for optimization study, in which the (RS)-.1-(4-.methyl-.phenyl) ethanol oxidation was evaluated in several reaction conditions. From these studies, it was observed that Flavobacterium sp. has an excellent enzymatic activity at 10 degrees C and Arthrobacter sp. at 15 and 25 degrees C. We have also determined the growth curves of these bacteria, and both strains showed optimum growth at 25 degrees C, indicating that these bacteria are psychrotroph.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Opposite enantiomers exhibit different NMR properties in the presence of an external common chiral element, and a chiral molecule exhibits different NMR properties in the presence of external enantiomeric chiral elements. Automatic prediction of such differences, and comparison with experimental values, leads to the assignment of the absolute configuration. Here two cases are reported, one using a dataset of 80 chiral secondary alcohols esterified with (R)-MTPA and the corresponding 1H NMR chemical shifts and the other with 94 13C NMR chemical shifts of chiral secondary alcohols in two enantiomeric chiral solvents. For the first application, counterpropagation neural networks were trained to predict the sign of the difference between chemical shifts of opposite stereoisomers. The neural networks were trained to process the chirality code of the alcohol as the input, and to give the NMR property as the output. In the second application, similar neural networks were employed, but the property to predict was the difference of chemical shifts in the two enantiomeric solvents. For independent test sets of 20 objects, 100% correct predictions were obtained in both applications concerning the sign of the chemical shifts differences. Additionally, with the second dataset, the difference of chemical shifts in the two enantiomeric solvents was quantitatively predicted, yielding r2 0.936 for the test set between the predicted and experimental values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reaction between 2-aminobenzenesulfonic acid and 2-hydroxy-3-methoxybenzaldehyde produces the acyclic Schiff base 2-[(2-hydroxy-3-methoxyphenyl) methylideneamino] benzenesulfonic acid (H2L center dot 3H(2)O) (1). In situ reactions of this compound with Cu(II) salts and, eventually, in the presence of pyridine (py) or 2,2'-bipyridine (2,2'-bipy) lead to the formation of the mononuclear complexes [CuL(H2O)(2)] (2) and [CuL(2,2'-bipy)]center dot DMF center dot H2O (3) and the diphenoxo-bridged dicopper compounds [CuL(py)](2) (4) and [CuL(EtOH)](2)center dot 2H(2)O (5). In 2-5 the L-2-ligand acts as a tridentate chelating species by means of one of the O-sulfonate atoms, the O-phenoxo and the N-atoms. The remaining coordination sites are then occupied by H2O (in 2), 2,2'-bipyridine (in 3), pyridine (in 4) or EtOH (in 5). Hydrogen bond interactions resulted in R-2(2) (14) and in R-4(4)(12) graph sets leading to dimeric species (in 2 and 3, respectively), 1D chain associations (in 2 and 5) or a 2D network (1). Complexes 2-5 are applied as selective catalysts for the homogeneous peroxidative (with tert-butylhydroperoxide, TBHP) oxidation of primary and secondary alcohols, under solvent-and additive-free conditions and under low power microwave (MW) irradiation. A quantitative yield of acetophenone was obtained by oxidation of 1-phenylethanol with compound 4 [TOFs up to 7.6 x 10(3) h(-1)] after 20 min of MW irradiation, whereas the oxidation of benzyl alcohol to benzaldehyde is less effective (TOF 992 h(-1)). The selectivity of 4 to oxidize the alcohol relative to the ene function is demonstrated when using cinnamyl alcohol as substrate.