627 resultados para Regularity lemma
Resumo:
We consider conditions which allow the embedding of linear hypergraphs of fixed size. In particular, we prove that any k-uniform hypergraph H of positive uniform density contains all linear k-uniform hypergraphs of a given size. More precisely, we show that for all integers l >= k >= 2 and every d > 0 there exists Q > 0 for which the following holds: if His a sufficiently large k-uniform hypergraph with the property that the density of H induced on every vertex subset of size on is at least d, then H contains every linear k-uniform hypergraph F with l vertices. The main ingredient in the proof of this result is a counting lemma for linear hypergraphs, which establishes that the straightforward extension of graph epsilon-regularity to hypergraphs suffices for counting linear hypergraphs. We also consider some related problems. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The existence of a small partition of a combinatorial structure into random-like subparts, a so-called regular partition, has proven to be very useful in the study of extremal problems, and has deep algorithmic consequences. The main result in this direction is the Szemeredi Regularity Lemma in graph theory. In this note, we are concerned with regularity in permutations: we show that every permutation of a sufficiently large set has a regular partition into a small number of intervals. This refines the partition given by Cooper (2006) [10], which required an additional non-interval exceptional class. We also introduce a distance between permutations that plays an important role in the study of convergence of a permutation sequence. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In 1983, Chvatal, Trotter and the two senior authors proved that for any Delta there exists a constant B such that, for any n, any 2-colouring of the edges of the complete graph K(N) with N >= Bn vertices yields a monochromatic copy of any graph H that has n vertices and maximum degree Delta. We prove that the complete graph may be replaced by a sparser graph G that has N vertices and O(N(2-1/Delta)log(1/Delta)N) edges, with N = [B`n] for some constant B` that depends only on Delta. Consequently, the so-called size-Ramsey number of any H with n vertices and maximum degree Delta is O(n(2-1/Delta)log(1/Delta)n) Our approach is based on random graphs; in fact, we show that the classical Erdos-Renyi random graph with the numerical parameters above satisfies a stronger partition property with high probability, namely, that any 2-colouring of its edges contains a monochromatic universal graph for the class of graphs on n vertices and maximum degree Delta. The main tool in our proof is the regularity method, adapted to a suitable sparse setting. The novel ingredient developed here is an embedding strategy that allows one to embed bounded degree graphs of linear order in certain pseudorandom graphs. Crucial to our proof is the fact that regularity is typically inherited at a scale that is much finer than the scale at which it is assumed. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Denote by R(L, L, L) the minimum integer N such that any 3-coloring of the edges of the complete graph on N vertices contains a monochromatic copy of a graph L. Bondy and Erdos conjectured that when L is the cycle C(n) on n vertices, R(C(n), C(n), C(n)) = 4n - 3 for every odd n > 3. Luczak proved that if n is odd, then R(C(n), C(n), C(n)) = 4n + o(n), as n -> infinity, and Kohayakawa, Simonovits and Skokan confirmed the Bondy-Erdos conjecture for all sufficiently large values of n. Figaj and Luczak determined an asymptotic result for the `complementary` case where the cycles are even: they showed that for even n, we have R(C(n), C(n), C(n)) = 2n + o(n), as n -> infinity. In this paper, we prove that there exists n I such that for every even n >= n(1), R(C(n), C(n), C(n)) = 2n. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We study quasi-random properties of k-uniform hypergraphs. Our central notion is uniform edge distribution with respect to large vertex sets. We will find several equivalent characterisations of this property and our work can be viewed as an extension of the well known Chung-Graham-Wilson theorem for quasi-random graphs. Moreover, let K(k) be the complete graph on k vertices and M(k) the line graph of the graph of the k-dimensional hypercube. We will show that the pair of graphs (K(k),M(k)) has the property that if the number of copies of both K(k) and M(k) in another graph G are as expected in the random graph of density d, then G is quasi-random (in the sense of the Chung-Graham-Wilson theorem) with density close to d. (C) 2011 Wiley Periodicals, Inc. Random Struct. Alg., 40, 1-38, 2012
Resumo:
We begin by giving an example of a smoothly bounded convex domain that has complex geodesics that do not extend continuously up to partial derivative D. This example suggests that continuity at the boundary of the complex geodesics of a convex domain Omega (sic) C-n, n >= 2, is affected by the extent to which partial derivative Omega curves or bends at each boundary point. We provide a sufficient condition to this effect (on C-1-smoothly bounded convex domains), which admits domains having boundary points at which the boundary is infinitely flat. Along the way, we establish a Hardy-Littlewood-type lemma that might be of independent interest.
Resumo:
A characteristic of Parkinson's disease (PD) is the development of tremor within the 4–6 Hz range. One method used to better understand pathological tremor is to compare the responses to tremor-type actions generated intentionally in healthy adults. This study was designed to investigate the similarities and differences between voluntarily generated 4–6 Hz tremor and PD tremor in regards to their amplitude, frequency and coupling characteristics. Tremor responses for 8 PD individuals (on- and off-medication) and 12 healthy adults were assessed under postural and resting conditions. Results showed that the voluntary and PD tremor were essentially identical with regards to the amplitude and peak frequency. However, differences between the groups were found for the variability (SD of peak frequency, proportional power) and regularity (Approximate Entropy, ApEn) of the tremor signal. Additionally, coherence analysis revealed strong inter-limb coupling during voluntary conditions while no bilateral coupling was seen for the PD persons. Overall, healthy participants were able to produce a 5 Hz tremulous motion indistinguishable to that of PD patients in terms of peak frequency and amplitude. However, differences in the structure of variability and level of inter-limb coupling were found for the tremor responses of the PD and healthy adults. These differences were preserved irrespective of the medication state of the PD persons. The results illustrate the importance of assessing the pattern of signal structure/variability to discriminate between different tremor forms, especially where no differences emerge in standard measures of mean amplitude as traditionally defined.
Resumo:
Transit passenger market segmentation enables transit operators to target different classes of transit users to provide customized information and services. The Smart Card (SC) data, from Automated Fare Collection system, facilitates the understanding of multiday travel regularity of transit passengers, and can be used to segment them into identifiable classes of similar behaviors and needs. However, the use of SC data for market segmentation has attracted very limited attention in the literature. This paper proposes a novel methodology for mining spatial and temporal travel regularity from each individual passenger’s historical SC transactions and segments them into four segments of transit users. After reconstructing the travel itineraries from historical SC transactions, the paper adopts the Density-Based Spatial Clustering of Application with Noise (DBSCAN) algorithm to mine travel regularity of each SC user. The travel regularity is then used to segment SC users by an a priori market segmentation approach. The methodology proposed in this paper assists transit operators to understand their passengers and provide them oriented information and services.
Resumo:
We consider some non-autonomous second order Cauchy problems of the form u + B(t)(u) over dot + A(t)u = f (t is an element of [0, T]), u(0) = (u) over dot(0) = 0. We assume that the first order problem (u) over dot + B(t)u = f (t is an element of [0, T]), u(0) = 0, has L-p-maximal regularity. Then we establish L-p-maximal regularity of the second order problem in situations when the domains of B(t(1)) and A(t(2)) always coincide, or when A(t) = kappa B(t).
Resumo:
Let M, M' be smooth, real analytic hypersurfaces of finite type in C-n and f a holomorphic correspondence (not necessarily proper) that is defined on one side of M, extends continuously up to M and maps M to M-t. It is shown that f must extend across M as a locally proper holonnorphic correspondence. This is a version for correspondences of the Diederich-Pinchuk extension result for CR maps.
Resumo:
A generalization of Nash-Williams′ lemma is proved for the Structure of m-uniform null (m − k)-designs. It is then applied to various graph reconstruction problems. A short combinatorial proof of the edge reconstructibility of digraphs having regular underlying undirected graphs (e.g., tournaments) is given. A type of Nash-Williams′ lemma is conjectured for the vertex reconstruction problem.
Resumo:
We derive and study a C(0) interior penalty method for a sixth-order elliptic equation on polygonal domains. The method uses the cubic Lagrange finite-element space, which is simple to implement and is readily available in commercial software. After introducing some notation and preliminary results, we provide a detailed derivation of the method. We then prove the well-posedness of the method as well as derive quasi-optimal error estimates in the energy norm. The proof is based on replacing Galerkin orthogonality with a posteriori analysis techniques. Using this approach, we are able to obtain a Cea-like lemma with minimal regularity assumptions on the solution. Numerical experiments are presented that support the theoretical findings.