Weak hypergraph regularity and linear hypergraphs
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
We consider conditions which allow the embedding of linear hypergraphs of fixed size. In particular, we prove that any k-uniform hypergraph H of positive uniform density contains all linear k-uniform hypergraphs of a given size. More precisely, we show that for all integers l >= k >= 2 and every d > 0 there exists Q > 0 for which the following holds: if His a sufficiently large k-uniform hypergraph with the property that the density of H induced on every vertex subset of size on is at least d, then H contains every linear k-uniform hypergraph F with l vertices. The main ingredient in the proof of this result is a counting lemma for linear hypergraphs, which establishes that the straightforward extension of graph epsilon-regularity to hypergraphs suffices for counting linear hypergraphs. We also consider some related problems. (C) 2009 Elsevier Inc. All rights reserved. FAPESP[FAPESP 2003/09925-5] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq[308509/2007-2] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq[485671/2007-7] CNPq[486124/2007-0] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) NSF[DMS 0639839] NSF NSF NSF[DMS 0300529] NSF NSF[DMS 0800070] |
Identificador |
JOURNAL OF COMBINATORIAL THEORY SERIES B, v.100, n.2, p.151-160, 2010 0095-8956 http://producao.usp.br/handle/BDPI/30381 10.1016/j.jctb.2009.05.005 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Combinatorial Theory Series B |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #Szemeredi`s regularity lemma #Quasirandom hypergraphs #Linear hypergraphs #K-UNIFORM HYPERGRAPHS #GRAPHS #LEMMA #PARTITIONS #Mathematics |
Tipo |
article original article publishedVersion |