The 3-colored Ramsey number of even cycles
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
Denote by R(L, L, L) the minimum integer N such that any 3-coloring of the edges of the complete graph on N vertices contains a monochromatic copy of a graph L. Bondy and Erdos conjectured that when L is the cycle C(n) on n vertices, R(C(n), C(n), C(n)) = 4n - 3 for every odd n > 3. Luczak proved that if n is odd, then R(C(n), C(n), C(n)) = 4n + o(n), as n -> infinity, and Kohayakawa, Simonovits and Skokan confirmed the Bondy-Erdos conjecture for all sufficiently large values of n. Figaj and Luczak determined an asymptotic result for the `complementary` case where the cycles are even: they showed that for even n, we have R(C(n), C(n), C(n)) = 2n + o(n), as n -> infinity. In this paper, we prove that there exists n I such that for every even n >= n(1), R(C(n), C(n), C(n)) = 2n. (C) 2009 Elsevier Inc. All rights reserved. Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[FAPESP 05/52494-0] FAPESP[FAPESP 03/09925-5] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[FAPESP 04/15397-4] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) National Science Foundation (NSF)[INT-0305793] National Science Foundation (NSF) |
Identificador |
JOURNAL OF COMBINATORIAL THEORY SERIES B, v.99, n.4, p.690-708, 2009 0095-8956 http://producao.usp.br/handle/BDPI/30787 10.1016/j.jctb.2008.12.002 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Combinatorial Theory Series B |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #Cycles #Ramsey number #Regularity lemma #Stability #Mathematics |
Tipo |
article original article publishedVersion |