The 3-colored Ramsey number of even cycles


Autoria(s): BENEVIDES, Fabricio Siqueira; SKOKAN, Jozef
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

Denote by R(L, L, L) the minimum integer N such that any 3-coloring of the edges of the complete graph on N vertices contains a monochromatic copy of a graph L. Bondy and Erdos conjectured that when L is the cycle C(n) on n vertices, R(C(n), C(n), C(n)) = 4n - 3 for every odd n > 3. Luczak proved that if n is odd, then R(C(n), C(n), C(n)) = 4n + o(n), as n -> infinity, and Kohayakawa, Simonovits and Skokan confirmed the Bondy-Erdos conjecture for all sufficiently large values of n. Figaj and Luczak determined an asymptotic result for the `complementary` case where the cycles are even: they showed that for even n, we have R(C(n), C(n), C(n)) = 2n + o(n), as n -> infinity. In this paper, we prove that there exists n I such that for every even n >= n(1), R(C(n), C(n), C(n)) = 2n. (C) 2009 Elsevier Inc. All rights reserved.

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[FAPESP 05/52494-0]

FAPESP[FAPESP 03/09925-5]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[FAPESP 04/15397-4]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

National Science Foundation (NSF)[INT-0305793]

National Science Foundation (NSF)

Identificador

JOURNAL OF COMBINATORIAL THEORY SERIES B, v.99, n.4, p.690-708, 2009

0095-8956

http://producao.usp.br/handle/BDPI/30787

10.1016/j.jctb.2008.12.002

http://dx.doi.org/10.1016/j.jctb.2008.12.002

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

Relação

Journal of Combinatorial Theory Series B

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #Cycles #Ramsey number #Regularity lemma #Stability #Mathematics
Tipo

article

original article

publishedVersion