471 resultados para RIEMANNIAN MANIFOLDS
Resumo:
Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on the norm of mean curvature and area. We show that on passing to a subsequence, we can choose parametrisations of the surfaces by inclusion maps from a fixed surface of the same genus so that the distance functions corresponding to the pullback metrics converge to a pseudo-metric and the inclusion maps converge to a Lipschitz map. We show further that the limiting pseudo-metric has fractal dimension two. As a corollary, we obtain a purely geometric result. Namely, we show that bounds on the mean curvature, area and genus of a surface F subset of M, together with bounds on the geometry of M, give an upper bound on the diameter of F. Our proof is modelled on Gromov's compactness theorem for J-holomorphic curves.
Resumo:
In this paper we extend the well-known Leinfelder–Simader theorem on the essential selfadjointness of singular Schrödinger operators to arbitrary complete Riemannian manifolds. This improves some earlier results of Shubin, Milatovic and others.
Resumo:
Let (M, g) be a complete Riemannian manifold, Omega subset of Man open subset whose closure is homeomorphic to an annulus. We prove that if a,Omega is smooth and it satisfies a strong concavity assumption, then there are at least two distinct geodesics in starting orthogonally to one connected component of a,Omega and arriving orthogonally onto the other one. Using the results given in Giamb et al. (Adv Differ Equ 10:931-960, 2005), we then obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct brake orbits for a class of Hamiltonian systems. Under a further symmetry assumption, the result is improved by showing the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and homoclinic orbits. In our proof we shall use recent deformation results proved in Giamb et al. (Nonlinear Anal Ser A: Theory Methods Appl 73:290-337, 2010).
Resumo:
In this paper we give a proof of the existence of an orthogonal geodesic chord on a Riemannian manifold homeomorphic to a closed disk and with concave boundary. This kind of study is motivated by the link (proved in Giambo et al. (2005) [8]) of the multiplicity problem with the famous Seifert conjecture (formulated in Seifert (1948) [1]) about multiple brake orbits for a class of Hamiltonian systems at a fixed energy level. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We prove the existence of an associated family of G-structure preserving minimal immersions into semi-Riemannian manifolds endowed with a compatible infinitesimally homogeneous G-structure. We will study in more details minimal embeddings into product of space forms.
Resumo:
We consider a 3-dimensional Riemannian manifold V with a metric g and an a±nor structure q. The local coordinates of these tensors are circulant matrices. In V we define an almost conformal transformation. Using that definition we construct an infinite series of circulant metrics which are successively almost conformaly related. In this case we get some properties.
Resumo:
We give simple formulas for the canonical metric, gradient, Lie derivative, Riemannian connection, parallel translation, geodesics and distance on the Grassmann manifold of p-planes in ℝn. In these formulas, p-planes are represented as the column space of n × p matrices. The Newton method on abstract Riemannian manifolds proposed by Smith is made explicit on the Grassmann manifold. Two applications - computing an invariant subspace of a matrix and the mean of subspaces - are worked out.
Resumo:
Recent advances suggest that encoding images through Symmetric Positive Definite (SPD) matrices and then interpreting such matrices as points on Riemannian manifolds can lead to increased classification performance. Taking into account manifold geometry is typically done via (1) embedding the manifolds in tangent spaces, or (2) embedding into Reproducing Kernel Hilbert Spaces (RKHS). While embedding into tangent spaces allows the use of existing Euclidean-based learning algorithms, manifold shape is only approximated which can cause loss of discriminatory information. The RKHS approach retains more of the manifold structure, but may require non-trivial effort to kernelise Euclidean-based learning algorithms. In contrast to the above approaches, in this paper we offer a novel solution that allows SPD matrices to be used with unmodified Euclidean-based learning algorithms, with the true manifold shape well-preserved. Specifically, we propose to project SPD matrices using a set of random projection hyperplanes over RKHS into a random projection space, which leads to representing each matrix as a vector of projection coefficients. Experiments on face recognition, person re-identification and texture classification show that the proposed approach outperforms several recent methods, such as Tensor Sparse Coding, Histogram Plus Epitome, Riemannian Locality Preserving Projection and Relational Divergence Classification.
Resumo:
We present a novel account of the theory of commutative spectral triples and their two closest noncommutative generalisations, almost-commutative spectral triples and toric noncommutative manifolds, with a focus on reconstruction theorems, viz, abstract, functional-analytic characterisations of global-analytically defined classes of spectral triples. We begin by reinterpreting Connes's reconstruction theorem for commutative spectral triples as a complete noncommutative-geometric characterisation of Dirac-type operators on compact oriented Riemannian manifolds, and in the process clarify folklore concerning stability of properties of spectral triples under suitable perturbation of the Dirac operator. Next, we apply this reinterpretation of the commutative reconstruction theorem to obtain a reconstruction theorem for almost-commutative spectral triples. In particular, we propose a revised, manifestly global-analytic definition of almost-commutative spectral triple, and, as an application of this global-analytic perspective, obtain a general result relating the spectral action on the total space of a finite normal compact oriented Riemannian cover to that on the base space. Throughout, we discuss the relevant refinements of these definitions and results to the case of real commutative and almost-commutative spectral triples. Finally, we outline progess towards a reconstruction theorem for toric noncommutative manifolds.
Resumo:
We study spectral properties of the Laplace-Beltrami operator on two relevant almost-Riemannian manifolds, namely the Grushin structures on the cylinder and on the sphere. This operator contains first order diverging terms caused by the divergence of the volume. We get explicit descriptions of the spectrum and the eigenfunctions. In particular in both cases we get a Weyl's law with leading term Elog E. We then study the drastic effect of Aharonov-Bohm magnetic potentials on the spectral properties. Other generalised Riemannian structures including conic and anti-conic type manifolds are also studied. In this case, the Aharonov-Bohm magnetic potential may affect the self-adjointness of the Laplace-Beltrami operator.
Resumo:
Let (M, g) be a complete Riemannian Manifold, Omega subset of M an open subset whose closure is diffeomorphic to an annulus. If partial derivative Omega is smooth and it satisfies a strong concavity assumption, then it is possible to prove that there are at least two geometrically distinct geodesics in (Omega) over bar = Omega boolean OR partial derivative Omega starting orthogonally to one connected component of partial derivative Omega and arriving orthogonally onto the other one. The results given in [6] allow to obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct brake orbits for a. class of Hamiltonian systems. Under a further symmetry assumption, it is possible to show the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and homoclinics.
Resumo:
We apply the theory of Peres and Schlag to obtain generic lower bounds for Hausdorff dimension of images of sets by orthogonal projections on simply connected two-dimensional Riemannian manifolds of constant curvature. As a conclusion we obtain appropriate versions of Marstrand's theorem, Kaufman's theorem, and Falconer's theorem in the above geometrical settings.
Resumo:
Ива Р. Докузова, Димитър Р. Разпопов - В настоящата статия е разгледан клас V оттримерни риманови многообразия M с метрика g и два афинорни тензора q и S. Дефинирана е и друга метрика ¯g в M. Локалните координати на всички тези тензори са циркулантни матрици. Намерени са: 1) зависимост между тензора на кривина R породен от g и тензора на кривина ¯R породен от ¯g; 2) тъждество за тензора на кривина R в случая, когато тензорът на кривина ¯R се анулира; 3) зависимост между секционната кривина на прозволна двумерна q-площадка {x, qx} и скаларната кривина на M.
Resumo:
International audience
Resumo:
Person re-identification is particularly challenging due to significant appearance changes across separate camera views. In order to re-identify people, a representative human signature should effectively handle differences in illumination, pose and camera parameters. While general appearance-based methods are modelled in Euclidean spaces, it has been argued that some applications in image and video analysis are better modelled via non-Euclidean manifold geometry. To this end, recent approaches represent images as covariance matrices, and interpret such matrices as points on Riemannian manifolds. As direct classification on such manifolds can be difficult, in this paper we propose to represent each manifold point as a vector of similarities to class representers, via a recently introduced form of Bregman matrix divergence known as the Stein divergence. This is followed by using a discriminative mapping of similarity vectors for final classification. The use of similarity vectors is in contrast to the traditional approach of embedding manifolds into tangent spaces, which can suffer from representing the manifold structure inaccurately. Comparative evaluations on benchmark ETHZ and iLIDS datasets for the person re-identification task show that the proposed approach obtains better performance than recent techniques such as Histogram Plus Epitome, Partial Least Squares, and Symmetry-Driven Accumulation of Local Features.