961 resultados para RADIATION EFFECTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of radiation on natural convection flow from an isothermal circular cylinder has been investigated numerically in this study. The governing boundary layer equations of motion are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are reduced to convenient boundary layer equations, which are then solved numerically by two distinct efficient methods namely: (i) implicit finite differencemethod or the Keller-Box Method (KBM) and (ii) Straight Forward Finite Difference Method (SFFD). Numerical results are presented by velocity and temperature distribution of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of surface heating parameter and radiation-conduction parameter. Due to the effects of the radiation the skin-friction coefficients as well as the rate of heat transfer increased and consequently the momentum and thermal boundary layer thickness enhanced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-value fruit crops are exposed to a range of environmental conditions that can reduce fruit quality. Solar injury (SI) or sunburn is a common disorder in tropical, sub-tropical, and temperate climates and is related to: 1) high fruit surface temperature; 2) high visible light intensity; and, 3) ultraviolet radiation (UV). Positional changes in fruit that are caused by increased weight or abrupt changes that result from summer pruning, limb breakage, or other damage to the canopy can expose fruit to high solar radiation levels, increased fruit surface temperatures, and increased UV exposure that are higher than the conditions to which they are adapted. In our studies, we examined the effects of high fruit surface temperature, saturating photosynthetically-active radiation (PAR), and short-term UV exposure on chlorophyll fluorescence, respiration, and photosynthesis of fruit peel tissues from tropical and temperate fruit in a simulation of these acute environmental changes. All tropical fruits (citrus, macadamia, avocado, pineapple, and custard apple) and the apple cultivars 'Gala', 'Gold Rush', and 'Granny Smith' increased dark respiration (A0) when exposed to UV, suggesting that UV repair mechanisms were induced. The maximum quantum efficiency of photosystem II (Fv/Fm) and the quantum efficiency of photosystem II (ΦII) were unaffected, indicating no adverse effects on photosystem II (PSII). In contrast, 'Braeburn' apple had a reduced Fv/Fm with no increase in A0 on all sampling dates. There was a consistent pattern in all studies. When Fv/Fm was unaffected by UV treatment, A0 increased significantly. Conversely, when Fv/Fm was reduced by UV treatment, then A0 was unaffected. The pattern suggests that when UV repair mechanisms are effective, PSII is adequately protected, and that this protection occurs at the cost of higher respiration. However, when the UV repair mechanisms are ineffective, not only is PSII damaged, but there is additional short-term damage to the repair mechanisms, indicated by a lack of respiration to provide energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanotechnology applications are entering the market in increasing numbers, nanoparticles being among the main classes of materials used. Particles can be used, e.g., for catalysing chemical reactions, such as is done in car exhaust catalysts today. They can also modify the optical and electronic properties of materials or be used as building blocks for thin film coatings on a variety of surfaces. To develop materials for specific applications, an intricate control of the particle properties, structure, size and shape is required. All these depend on a multitude of factors from methods of synthesis and deposition to post-processing. This thesis addresses the control of nanoparticle structure by low-energy cluster beam deposition and post-synthesis ion irradiation. Cluster deposition in high vacuum offers a method for obtaining precisely controlled cluster-assembled materials with minimal contamination. Due to the clusters small size, however, the cluster-surface interaction may drastically change the cluster properties on deposition. In this thesis, the deposition process of metal and alloy clusters on metallic surfaces is modelled using molecular dynamics simulations, and the mechanisms influencing cluster structure are identified. Two mechanisms, mechanical melting upon deposition and thermally activated dislocation motion, are shown to determine whether a deposited cluster will align epitaxially with its support. The semiconductor industry has used ion irradiation as a tool to modify material properties for decades. Irradiation can be used for doping, patterning surfaces, and inducing chemical ordering in alloys, just to give a few examples. The irradiation response of nanoparticles has, however, remained an almost uncharted territory. Although irradiation effects in nanoparticles embedded inside solid matrices have been studied, almost no work has been done on supported particles. In this thesis, the response of supported nanoparticles is studied systematically for heavy and light ion irradiation. The processes leading to damage production are identified and models are developed for both types of irradiation. In recent experiments, helium irradiation has been shown to induce a phase transformation from multiply twinned to single-crystalline nanoparticles in bimetallic alloys, but the nature of the transition has remained unknown. The alloys for which the effect has been observed are CuAu and FePt. It is shown in this thesis that transient amorphization leads to the observed transition and that while CuAu and FePt do not amorphize upon irradiation in bulk or as thin films, they readily do so as nanoparticles. This is the first time such an effect is demonstrated with supported particles, not embedded in a matrix where mixing is always an issue. An understanding of the above physical processes is essential, if nanoparticles are to be used in applications in an optimal way. This thesis clarifies the mechanisms which control particle morphology, and paves way for the synthesis of nanostructured materials tailored for specific applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nondestructive selection technique for predicting ionizing radiation effects of commercial metal-oxide-semiconductor (MOS) devices has been put forward. The basic principle and application details of this technique have been discussed. Practical application for the 54HC04 and 54HC08 circuits has shown that the predicted radiation-sensitive parameters such as threshold voltage, static power supply current and radiation failure total dose are consistent with the experimental results obtained only by measuring original electrical parameters. It is important and necessary to choose suitable information parameters. This novel technique can be used for initial radiation selection of some commercial MOS devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A process for fabricating n channel JFET/SOS (junction field-effect transistors on silicon-on-sapphire) has been researched. The gate p(+)n junction was obtained by diffusion, and the conductive channel was gotten by a double ion implantation. Both enhancement and depletion mode transistors were fabricated in different processing conditions. From the results of the Co-50 gamma ray irradiation experimental we found that the devices had a good total dose radiation-hardness. When the tot;ll dose was 5Mrad(Si), their threshold voltages shift was less than 0.1V. The variation of transconductance and the channel leakage current were also little.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the radiation properties of the immiscible blend of nylon1010 and HIPS. The gel fraction increased with increasing radiation dose. The network was found mostly in nylon1010, the networks were also found in both nylon1010 and HIPS when the dose reaches 0.85 MGy or more. We used the Charleby-Pinner equation and the modified Zhang-Sun-Qian equation to simulate the relationship with the dose and the sol fraction. The latter equation fits well with these polymer blends and the relationship used by it showed better linearity than the one by the Charleby-Pinner equation. We also studied the conditions of formation of the network by the mathematical expectation theorem for the binary system. Thermal properties of polymer blend were observed by DSC curves. The crystallization temperature decreases with increasing dose because the cross-linking reaction inhibited the crystallization procession and destroyed the crystals. The melting temperature also reduced with increasing radiation dose. The dual melting peak gradually shifted to single peak and the high melting peak disappeared at high radiation dose. However, the radiation-induced crystallization was observed by the heat of fusion increasing at low radiation dose. On the other hand, the crystal will be damaged by radiation. A similar conclusion may be drawn by the DSC traces when the polymer blends were crystallized. When the radiation dose increases, the heat of fusion reduces dramatically and so does the heat of crystallization. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper studies the morphology and mechanical properties of immiscible binary blends of the nylon 1010 and HIPS through the radiation crosslinking method. In this blend, the HIPS particles were the dispersed phases in the nylon 1010 matrix. With increasing of dose, the elastic modulus increased, However, the tensile strength. elongation at bleak and the energy of fracture increased to a maximum at a dose of 0.34 MGy, then reduced with the increasing of dose. SEM photographs show that the hole sizes are not changed obviously at low dose and at high dose, remnants that cannot be dissolved in formic acid and THF can be observed in the holes and on the surface. TEM photographs showed that radiation destroys the rubber phases in the polymer blend. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aimed at saving the radiation dose required to crosslinking the polyamid-1010, BMI/PA1010 systems containing different amounts of difunctional crosslinking agent N,N'-bis-maleimide-4,4'-biphenyl methane (BMI) were prepared and the structure changes at the crystallographic and supermolecular levels before and after irradiation were studied by using WAXD, SAXS, and DSC techniques. It was found that by incorporation of BMI the microcrystal size L-100 is lowered due to the formation of hydrogen bond between the carbonyl oxygen of BMI and the amide hydrogen of PA1010 in the hydrogen bonded plane, and the overall crystallinity W-c is also decreased. The presence of BMI causes the crystal lamella thickness d(c) to decrease and greatly thickens the transition zone d(tr) between the crystalline and amorphous regions. As for the irradiated specimen, the maximum increments in the L-100 and W-c against dose curves decrease with BMI content, and the interception point D-i, at which the L-100 and W-c curves intercept their respective horizontal line of L-100/L-100(0) and W-c/W-c(0)=1, shift to lower dose with an increase in BMI concentration. In addition. the mechanism of the radiation chemical reactions in the three different phases under the action of BMI are discussed with special focus on the interface region. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irradiated polyamide-1010 (PA1010) with and without heat treatment after gamma-ray irradiation was compared by wide angle x-ray diffraction (WAXD), differential scanning calorimeter (DSC) and the determination of gel fractions. The results indicate that post radiation effects due to post radiation crosslinking and scissions affect physical properties. Post radiation effects restrain the formation and perfection of the planes (010), and make the crystals imperfect. Post radiation effects change the crystalline structures of polyamide-1010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irradiated polyamide-1010 (PA1010) and PA1010 containing 0.5% (wt) heterogeneous nuclei were studied by ESR, WAXD, DSC and the determination of gel fractions. The fold surface of the lamellae plays an important role in the effects of radiation on crystalline PA1010. The results show that the direct radiation effects on both samples vary, while after being heated to 220 degrees C, the final radiation effects are identical, regardless of the difference in the amount of the fold surface of the lamellae. The post-radiation effects result predominantly from the fold surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melt-crystallized poly(vinylidene fluoride)s (PVF2) with different crystallization histories were irradiated with gamma-rays within the range of irradiation doses 0-83 Mrad. The effects on the crystalline structure and mechanical properties have been measured, compared, and discussed. The degree of crystallinity of the samples was found to increase with radiation dose. The differential scanning calorimeter scans of the quenched samples indicate that there are two melting peaks, and that the area of the lower temperature peak increases while the area of higher temperature peak decreases with increasing dose. Yield stress and breaking stress for all samples are not significantly affected by irradiation but elongation at break is.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using WAXD, DSC and gel fraction determination techniques, the mechanism of radiation crosslinking of polyethylene oxide (PEO) was explored, and the dependence of aggregated state on the chemical reaction and physical structure was also discussed. It was found that just like other semi-crystalline polymers, the state of aggregation of the specimen has a profound influence on the radiation effects on PEO. On the contrary, the crystalline structure of the specimen is severely affected with the increase in radiation dose and eventually amorphortized when subjected to an extremely high radiation dose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work PTFE sheets irradiated with gamma-rays at 150-degrees-C and 200-degrees-C were studied using x-ray photoelectron spectroscopy (XPS). The main structural changes in PTFE due to radiation are the formation of CF3 and CF groups. An irradiation temperature dependence of the relative content of the three kinds of groups in irradiated PTFE was observed. The CF3 groups, especially when irradiation is carried out a lower temperatures, can defluorinate in the same manner as previosly reported for CF2 groups. The CF groups, on the other hand, are observed to increase with increasing irradiation dose and irradiation temperature; the latter was explained as due to an increase in branching structures.