886 resultados para Pertussis Vaccine -- immunology
Resumo:
Many efforts are currently made to prepare combined vaccines against most infectious pathogens, that may be administered early in life to protect infants against infectious diseases as early as possible. However, little is known about the general immune modulation induced by early vaccination. Here, we have analyzed the cytokine secretion profiles of two groups of 6-month-old infants having received as primary immunization either a whole-cell (Pw) or an acellular (Pa) pertussis vaccine in a tetravalent formulation of pertussis-tetanus-diphtheria-poliomyelitis vaccines. Both groups of infants secreted IFN-gamma in response to the Bordetella pertussis antigens filamentous haemagglutinin and pertussis toxin, and this response was correlated with antigen-specific IL-12p70 secretion, indicating that both pertussis vaccines induced Th1 cytokines. However, Pa recipients also developed a strong Th2-type cytokine response to the B. pertussis antigens, as noted previously. In addition, they induced Th2-type cytokines to the co-administrated antigen tetanus toxoïd, as well as to the food antigen beta-lactoglobulin. Furthermore, the general cytokine profile of the Pa recipients was strongly Th2-skewed at 6 months, as indicated by the cytokines induced by the mitogen phytohaemagglutinin. These data demonstrate that the cytokine profile of 6-month-old infants is influenced by the type of formulation of the pertussis vaccine they received at 2, 3 and 4 months of life. Large prospective studies would be warranted to evaluate the possible long-term consequences of this early modulation of the cytokine responses in infants.
Resumo:
Two different types of pertussis vaccines are currently available to protect children against whooping cough, the first-generation whole-cell (Pw) vaccines and the more recent acellular (Pa) vaccines. Both types provide good protection, yet induce different types of immune responses in 6-month-old infants, with a strong Th1 response induced by Pw vaccines compared to a mixed Th1/Th2 response and a delay in non-specific IFN-gamma secretions after the administration of Pa vaccines. We show here that at 13 months of age, most Pw- or Pa-vaccinated children display Bordetella pertussis-specific T-cell responses, in addition to significant antibody levels, although a higher Th2/Th1 cytokine ratio remained in Pa recipients compared to Pw recipients. In contrast, the proportion of children with tetanus toxin-specific T-cell responses was lower in Pa than in Pw vaccine recipients, although most children had protective anti-tetanus toxin IgG levels. In addition, the global Th2 bias observed in 6-month-old infants vaccinated with a Pa vaccine was normalized at 13 months.
Resumo:
Immunogenicity and reactogenicity of DTPa and reduced antigen dTpa booster vaccines were compared to a hepatitis A control vaccine in DTPa-primed toddlers aged 18-20 months. Post-booster, all DTPa and dTpa recipients were seroprotected against diphtheria and tetanus, and >= 93.3% had a booster response to pertussis. There were similar reactogenicity rates in the DTPa and dTpa vaccine recipients. Few Grade 3 symptoms were reported. Just over one in four children in the control group had diphtheria antibody at or potentially below the correlate of protection benchmark (0.016 IU/ml). Larger studies should evaluate potential benefits of reduced antigen vaccines and seroprotection in children who do not receive a booster dose of DTPa at this age, including protection against diphtheria until subsequent booster doses are given. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
Neonatal immaturity of the immune system is currently believed to generally limit the induction of immune responses to vaccine Ags and to skew them toward type 2 responses. We demonstrated here that Bordetella pertussis infection in very young infants (median, 2 mo old) as well as the first administration of whole-cell pertussis vaccine induces B. pertussis Ag-specific IFN-gamma secretion by the PBMC of these infants. IFN-gamma was secreted by both CD4(+) and CD8(+) T lymphocytes, and the levels of Ag-induced IFN-gamma secretion did not correlate with the age of the infants. Appearance of the specific Th-1 cell-mediated immunity was accompanied by a general shift of the cytokine secretion profile of these infants toward a stronger Th1 profile, as evidenced by the response to a polyclonal stimulation. We conclude that the immune system of 2-mo-old infants is developmentally mature enough to develop Th1 responses in vivo upon infection by B. pertussis or vaccination with whole-cell pertussis vaccines.
Resumo:
Antigen-specific gamma interferon (IFN-gamma) has been demonstrated to participate in protection against Bordetella pertussis infection. Circulating mononuclear cells from B. pertussis-infected and from pertussis-vaccinated infants secrete high amounts of IFN-gamma after in vitro stimulation by B. pertussis antigens, but with a large variation in the secreted IFN-gamma levels between individuals. We show here that the inhibition of the specific IFN-gamma response can be at least partially attributed to IL-10 secretion by monocytes. This IL-10 secretion was not associated with polymorphisms at positions -1082, -819, and -592 of the IL-10 gene promoter, suggesting that other genetic or environmental factors affect IL-10 expression and secretion.
Resumo:
Whooping cough still represents a major health problem, despite the use of effective vaccines for several decades. Being classically a typical childhood disease, whooping cough in young adults is now more common than it used to be, suggesting that protection after vaccination wanes during adolescence. As an alternative to the current vaccines, we wish to develop live attenuated vaccines to be delivered by the nasal route, such as to mimic the natural route of infection and to induce long lasting immunity. Bordetella pertussis, the etiological agent of whooping cough, produces a number of virulence factors, including toxins. Its recently determined genome sequence makes it now possible to apply functional genomics, such as transcriptomics and systematic knock-out mutagenesis. The expression of most known B. pertussis virulence genes is controlled by the two-component system BvgA/S. DNA microarray analyses have led to the identification of novel genes in the BvgA/S regulon, some of which are activated by BvgA/S and others are repressed by BvgA/S. In addition, some genes appear to be differentially modulated by nicotinic acid and MgSO4, both known to modulate the expression of BvgA/S-regulated genes. Among others, the functional genomics approach has uncovered two strongly BvgA/S-activated genes, named hotA and hotB (for 'homolog of toxin'), the products of which show high sequence similarities to pertussis toxin subunits. The identification of the full array of virulence factors, as well as an integrated understanding of the bacterial physiology should allow us to design attenuated B. pertussis strains useful for intranasal vaccination. A first generation of attenuated strains has already shown full protection in mice after a single intranasal administration. Such strains may also serve as vaccine carriers for heterologous antigens, in order to vaccinate against several different pathogens simultaneously.
Resumo:
Measurement of antigen-specific T cell responses is an adjunctive parameter to evaluate protection induced by a previous Bordetella pertussis infection or vaccination. The assessment of T cell responses is technically complex and usually performed on fresh peripheral blood mononuclear cells (PBMC). The objective of this study was to identify simplified methods to assess pertussis specific T cell responses and verify if these assays could be performed using frozen/thawed (frozen) PBMC. Three read-outs to measure proliferation were compared: the fluorescent dye 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) dilution test, the number of blast cells defined by physical parameters, and the incorporation of (3)H-thymidine. The results of pertussis-specific assays performed on fresh PBMC were compared to the results on frozen PBMC from the same donor. High concordance was obtained when the results of CFSE and blast read-outs were compared, an encouraging result since blast analysis allows the identification of proliferating cells and does not require any use of radioactive tracer as well as any staining. The results obtained using fresh and frozen PBMC from the same donor in the different T cell assays, including IFNγ and TNFα cytokine production, did not show significant differences, suggesting that a careful cryopreservation process of PBMC would not significantly influence T cell response evaluation. Adopting blast analysis and frozen PBMC, the possibility to test T cell responses is simplified and might be applied in population studies, providing for new instruments to better define correlates of protection still elusive in pertussis.
Resumo:
Whooping cough remains a problem despite vaccination, and worldwide resurgence of pertussis is evident. Since cellular immunity plays a role in long-term protection against pertussis, we studied pertussis-specific T-cell responses. Around the time of the preschool acellular pertussis (aP) booster dose at 4 years of age, T-cell memory responses were compared in children who were primed during infancy with either a whole-cell pertussis (wP) or an aP vaccine. Peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with pertussis vaccine antigens for 5 days. T cells were characterized by flow-based analysis of carboxyfluorescein succinimidyl ester (CFSE) dilution and CD4, CD3, CD45RA, CCR7, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) expression. Before the aP preschool booster vaccination, both the proliferated pertussis toxin (PT)-specific CD4+ and CD8+ T-cell fractions (CFSEdim) were higher in aP-than in wP-primed children. Post-booster vaccination, more pertussis-specific CD4+ effector memory cells (CD45RA- CCR7-) were induced in aP-primed children than in those primed with wP. The booster vaccination did not appear to significantly affect the T-cell memory subsets and functionality in aP-primed or wP-primed children. Although the percentages of Th1 cytokine-producing cells were alike in aP- and wP-primed children pre-booster vaccination, aP-primed children produced more Th1 cytokines due to higher numbers of proliferated pertussis-specific effector memory cells. At present, infant vaccinations with four aP vaccines in the first year of life result in pertussis-specific CD4+ and CD8+ effector memory T-cell responses that persist in children until 4 years of age and are higher than those in wP-primed children. The booster at 4 years of age is therefore questionable; this may be postponed to 6 years of age.
Resumo:
Based on studies reporting specific antibody titers, it is recommended to vaccinate preterm infants against Bordetella pertussis according to their chronological age. However, as specific T-cell responses also are involved in the protection against B. pertussis, we have determined whether highly preterm infants (<31 weeks) are able to mount these immune responses during vaccination. Forty-eight premature infants were vaccinated at 2, 3, and 4 months of their chronological age with an acellular (Pa; n = 24) or a whole-cell (Pw; n = 24) tetravalent diphtheria-tetanus-pertussis-polio vaccine, and blood samples were collected at 2, 3, and 6 months of age. Most of the Pa- and Pw-vaccinated infants developed at 3 or 6 months of age a gamma interferon (IFN-gamma) response to the B. pertussis antigens, accompanied by an interleukin-5 (IL-5) and IL-13 secretion for the Pa-vaccinated infants. No association was found between a very low infant birth weight, the occurrence of severe infections, and corticosteroid treatment or the administration of gammaglobulins with a low level of antigen-induced IFN-gamma secretion. We conclude that like full-term infants, most preterm infants are able to mount a specific cellular immune response to the administration of the first doses of an acellular or a whole-cell pertussis vaccine.
Resumo:
Shock waves are one of the most efficient mechanisms of energy dissipation observed in nature. In this study, utilizing the instantaneous mechanical impulse generated behind a micro-shock wave during a controlled explosion, a novel nonintrusive needleless vaccine delivery system has been developed. It is well-known that antigens in the epidermis are efficiently presented by resident Langerhans cells, eliciting the requisite immune response, making them a good target for vaccine delivery. Unfortunately, needle-free devices for epidermal delivery have inherent problems from the perspective of the safety and comfort of the patient. The penetration depth of less than 100 mu m in the skin can elicit higher immune response without any pain. Here we show the efficient utilization of our needleless device (that uses micro-shock waves) for vaccination. The production of liquid jet was confirmed by high-speed microscopy, and the penetration in acrylamide gel and mouse skin was observed by confocal microscopy. Salmonella enterica serovar Typhimurium vaccine strain pmrG-HM-D (DV-STM-07) was delivered using our device in the murine salmonellosis model, and the effectiveness of the delivery system for vaccination was compared with other routes of vaccination. Vaccination using our device elicits better protection and an IgG response even at a lower vaccine dose (10-fold less) compared to other routes of vaccination. We anticipate that our novel method can be utilized for effective, cheap, and safe vaccination in the near future.
Resumo:
To better understand vaccine-induced protection and its potential failure in light of recent whooping cough resurgence, we evaluated quantity as well as quality of memory T cell responses in B. pertussis-vaccinated preadolescent children. Using a technique based on flow cytometry to detect proliferation, cytokine production and phenotype of antigen-specific cells, we evaluated residual T cell memory in a cohort of preadolescents who received a whole-cell pertussis (wP; n=11) or an acellular pertussis vaccine (aP; n=13) during infancy, and with a median of 4 years elapsed from the last pertussis booster vaccine, which was aP for all children. We demonstrated that B. pertussis-specific memory T cells are detectable in the majority of preadolescent children several years after vaccination. CD4(+) and CD8(+) T cell proliferation in response to pertussis toxin and/or filamentous hemagglutinin was detected in 79% and 60% of the children respectively, and interferon-γ or tumor necrosis factor-α producing CD4(+) T cells were detected in 65% and 53% of the children respectively. Phenotyping of the responding cells showed that the majority of antigen-specific cells, whether defined by proliferation or cytokine production, were CD45RA(-)CCR7(-) effector memory T cells. Although the time since the last booster vaccine was significantly longer for wP-compared to aP-vaccinated children, their proliferation capacity in response to antigenic stimulation was comparable, and more children had a detectable cytokine response after wP- compared to aP-vaccination. This study supports at the immunological level recent epidemiological studies indicating that infant vaccination with wP induces longer lasting immunity than vaccination with aP-vaccines.
Resumo:
We estimated the sensitivity, i.e., the proportion of all cases of adverse events following immunization (AEFIs) reported to the Brazilian passive surveillance for adverse events following immunization (PSAEFI) with the diphtheria-tetanus-whole-cell pertussis-Haemophilus influenzae type b (DTwP/Hib) vaccine, as well as investigating factors associated with AEFIs reporting. During 2003-2004, 8303 AEFIs associated with DTwP-Hib were reported; hypotonic-hyporesponsive episodes (HHEs), fever and convulsions being the most common. Cure without sequel was achieved in 98.4% of the cases. The mean sensitivity of the PSAEFI was 22.3% and 31.6%, respectively, for HHE and convulsions, varying widely among states. Reporting rates correlated positively with the Human Development Index and coverage of adequate prenatal care, correlating negatively with infant mortality rates. Quality of life indicators and the degree of organization of health services are associated with greater PSAEFI sensitivity. In addition to consistently describing the principal AEFIs, PSAEFI showed the DTwP/Hib vaccine to be safe and allayed public fears related to its use. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Recombinant adenovirus or DNA vaccines encoding herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) genetically fused to human papillomavirus type 16 (HPV-16) oncoproteins (E5, E6, and E7) induce antigen-specific CD8(+) T-cell responses and confer preventive resistance to transplantable murine tumor cells (TC-1 cells). In the present report, we characterized some previously uncovered aspects concerning the induction of CD8(+) T-cell responses and the therapeutic anticancer effects achieved in C57BL/6 mice immunized with pgD-E7E6E5 previously challenged with TC-1 cells. Concerning the characterization of the immune responses elicited in mice vaccinated with pgD-E7E6E5, we determined the effect of the CD4(+) T-cell requirement, longevity, and dose-dependent activation on the E7-specific CD8(+) T-cell responses. In addition, we determined the priming/boosting properties of pgD-E7E6E5 when used in combination with a recombinant serotype 68 adenovirus (AdC68) vector encoding the same chimeric antigen. Mice challenged with TC-1 cells and then immunized with three doses of pgD-E7E6E5 elicited CD8(+) T-cell responses, measured by intracellular gamma interferon (IFN-gamma) and CD107a accumulation, to the three HPV-16 oncoproteins and displayed in vivo antigen-specific cytolytic activity, as demonstrated with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled target cells pulsed with oligopeptides corresponding to the H-2D(b)-restricted immunodominant epitopes of the E7, E6, or E5 oncoprotein. Up to 70% of the mice challenged with 5 x 10(5) TC-1 cells and immunized with pgD-E7E6E5 controlled tumor development even after 3 days of tumor cell challenge. In addition, coadministration of pgD-E7E6E5 with DNA vectors encoding pGM-CSF or interleukin-12 (IL-12) enhanced the therapeutic antitumor effects for all mice challenged with TC-1 cells. In conclusion, the present results expand our previous knowledge on the immune modulation properties of the pgD-E7E6E5 vector and demonstrate, for the first time, the strong antitumor effects of the DNA vaccine, raising promising perspectives regarding the development of immunotherapeutic reagents for the control of HPV-16-associated tumors.