959 resultados para Perturbative expansion


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A variational analysis of the spiked harmonic oscillator Hamiltonian operator - d2/dx2 + x2 + l(l + 1)/x2 + λ|x| -α, where α is a real positive parameter, is reported in this work. The formalism makes use of the functional space spanned by the solutions of the Schrödinger equation for the linear harmonic oscillator Hamiltonian supplemented by a Dirichlet boundary condition, and a standard procedure for diagonalizing symmetric matrices. The eigenvalues obtained by increasing the dimension of the basis set provide accurate approximations for the ground state energy of the model system, valid for positive and relatively large values of the coupling parameter λ. Additionally, a large coupling perturbative expansion is carried out and the contributions up to fourth-order to the ground state energy are explicitly evaluated. Numerical results are compared for the special case α = 5/2. © 1989 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent progress in the solution of Schwinger-Dyson equations, as well as lattice simulation of pure glue QCD, indicate that the gluon propagator and coupling constant are infrared finite. Such non-perturbative information can be introduced in the QCD perturbative expansion in the scheme named Dynamical Perturbation Theory. We exemplify this procedure with the calculation of some two-body non-leptonic annihilation B meson decays, which show agreement with the experimental data in the case of a gluon propagator characterized by a dynamical gluon mass of 500MeV, compatible with the value found in several processes computed with this method. We give a. preliminary account of the application of this procedure at the loop level in the case of the Bjorken sum rule.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We compute the leading radiative correction to the Casimir force between two parallel plates in the lambdaPhi(4) theory. Dirichlet and periodic boundary conditions are considered. A heuristic approach, in which the Casimir energy is computed as the sum of one-loop corrected zero-point energies, is shown to yield incorrect results, but we show how to amend it. The technique is then used in the case of periodic boundary conditions to construct a perturbative expansion which is free of infrared singularities in the massless limit. In this case we also compute the next-to-leading order radiative correction, which turns out to be proportional to lambda(3/2).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By using the multiple scale method with the simultaneous introduction of multiple times, we study the propagation of long surface-waves in a shallow inviscid fluid. As a consequence of the requirements of scale invariance and absence of secular terms in each order of the perturbative expansion, we show that the Korteweg-de Vries hierarchy equations do play a role in the description of such waves. Finally, we show that this procedure of eliminating secularities is closely related to the renormalization technique introduced by Kodama and Taniuti. © 1995 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent progress in the solution of Schwinger-Dyson equations (SDE), as well as lattice simulation of pure glue QCD, indicate that the gluon propagator and coupling constant are infrared (IR) finite. We discuss how this non-perturbative information can be introduced into the QCD perturbative expansion in a consistent scheme, showing some examples of tree level hadronic reactions that successfully fit the experimental data with the gluon propagator and coupling constant depending on a dynamically generated gluon mass. This infrared mass scale acts as a natural cutoff and eliminates some of the ad hoc parameters usually found in perturbative QCD calculations. The application of these IR finite Green's functions in the case of higher order terms of the perturbative expansion is commented. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die vorliegende Arbeit beschäftigt sich mit derAutomatisierung von Berechnungen virtuellerStrahlungskorrekturen in perturbativen Quantenfeldtheorien.Die Berücksichtigung solcher Korrekturen aufMehrschleifen-Ebene in der Störungsreihenentwicklung istheute unabdingbar, um mit der wachsenden Präzisionexperimenteller Resultate Schritt zu halten. Im allgemeinen kinematischen Fall können heute nur dieEinschleifen-Korrekturen als theoretisch gelöst angesehenwerden -- für höhere Ordnungen liegen nur Teilergebnissevor. In Mainz sind in den letzten Jahren einige neuartigeMethoden zur Integration von Zweischleifen-Feynmandiagrammenentwickelt und im xloops-Paket in algorithmischer Formteilweise erfolgreich implementiert worden. Die verwendetenVerfahren sind eine Kombination exakter symbolischerRechenmethoden mit numerischen. DieZweischleifen-Vierbeinfunktionen stellen in diesem Rahmenein neues Kapitel dar, das durch seine große Anzahl vonfreien kinematischen Parametern einerseits leichtunüberschaubar wird und andererseits auch auf symbolischerEbene die bisherigen Anforderungen übersteigt. Sie sind ausexperimenteller Sicht aber für manche Streuprozesse vongroßem Interesse. In dieser Arbeit wurde, basierend auf einer Idee von DirkKreimer, ein Verfahren untersucht, welches die skalarenVierbeinfunktionen auf Zweischleifen-Niveau ganz ohneRandbedingungen an den Parameterraum zu integrierenversucht. Die Struktur der nach vier Residuenintegrationenauftretenden Terme konnte dabei weitgehend geklärt und dieKomplexität der auftretenden Ausdrücke soweit verkleinertwerden, dass sie von heutigen Rechnern darstellbar sind.Allerdings ist man noch nicht bei einer vollständigautomatisierten Implementierung angelangt. All dies ist dasThema von Kapitel 2. Die Weiterentwicklung von xloops über Zweibeinfunktionenhinaus erschien aus vielfältigen Gründen allerdings nichtmehr sinnvoll. Im Rahmen dieser Arbeit wurde daher einradikaler Bruch vollzogen und zusammen mit C. Bauer und A.Frink eine Programmbibliothek entworfen, die als Vehikel fürsymbolische Manipulationen dient und es uns ermöglicht,übliche symbolische Sprachen wie Maple durch C++ zuersetzen. Im dritten Kapitel wird auf die Gründeeingegangen, warum diese Umstellung sinnvoll ist, und dabeidie Bibliothek GiNaC vorgestellt. Im vierten Kapitel werdenDetails der Implementierung dann im Einzelnen vorgestelltund im fünften wird sie auf ihre Praxistauglichkeituntersucht. Anhang A bietet eine Übersicht über dieverwendeten Hilfsmittel komplexer Analysis und Anhang Bbeschreibt ein bewährtes numerisches Instrument.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A variety of lattice discretisations of continuum actions has been considered, usually requiring the correct classical continuum limit. Here we discuss “weird” lattice formulations without that property, namely lattice actions that are invariant under most continuous deformations of the field configuration, in one version even without any coupling constants. It turns out that universality is powerful enough to still provide the correct quantum continuum limit, despite the absence of a classical limit, or a perturbative expansion. We demonstrate this for a set of O(N) models (or non-linear σ-models). Amazingly, such “weird” lattice actions are not only in the right universality class, but some of them even have practical benefits, in particular an excellent scaling behaviour.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the random input problem for a nonlinear system modeled by the integrable one-dimensional self-focusing nonlinear Schrödinger equation (NLSE). We concentrate on the properties obtained from the direct scattering problem associated with the NLSE. We discuss some general issues regarding soliton creation from random input. We also study the averaged spectral density of random quasilinear waves generated in the NLSE channel for two models of the disordered input field profile. The first model is symmetric complex Gaussian white noise and the second one is a real dichotomous (telegraph) process. For the former model, the closed-form expression for the averaged spectral density is obtained, while for the dichotomous real input we present the small noise perturbative expansion for the same quantity. In the case of the dichotomous input, we also obtain the distribution of minimal pulse width required for a soliton generation. The obtained results can be applied to a multitude of problems including random nonlinear Fraunhoffer diffraction, transmission properties of randomly apodized long period Fiber Bragg gratings, and the propagation of incoherent pulses in optical fibers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyze the causal structure of the two-dimensional (2D) reduced background used in the perturbative treatment of a head-on collision of two D-dimensional Aichelburg–Sexl gravitational shock waves. After defining all causal boundaries, namely the future light-cone of the collision and the past light-cone of a future observer, we obtain characteristic coordinates using two independent methods. The first is a geometrical construction of the null rays which define the various light cones, using a parametric representation. The second is a transformation of the 2D reduced wave operator for the problem into a hyperbolic form. The characteristic coordinates are then compactified allowing us to represent all causal light rays in a conformal Carter–Penrose diagram. Our construction holds to all orders in perturbation theory. In particular, we can easily identify the singularities of the source functions and of the Green’s functions appearing in the perturbative expansion, at each order, which is crucial for a successful numerical evaluation of any higher order corrections using this method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the path-integral technique we examine the mutual information for the communication channel modeled by the nonlinear Schrödinger equation with additive Gaussian noise. The nonlinear Schrödinger equation is one of the fundamental models in nonlinear physics, and it has a broad range of applications, including fiber optical communications - the backbone of the internet. At large signal-to-noise ratio we present the mutual information through the path-integral, which is convenient for the perturbative expansion in nonlinearity. In the limit of small noise and small nonlinearity we derive analytically the first nonzero nonlinear correction to the mutual information for the channel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This PhD thesis focuses on studying the classical scattering of massive/massless particles toward black holes, and investigating double copy relations between classical observables in gauge theories and gravity. This is done in the Post-Minkowskian approximation i.e. a perturbative expansion of observables controlled by the gravitational coupling constant κ = 32πGN, with GN being the Newtonian coupling constant. The investigation is performed by using the Worldline Quantum Field Theory (WQFT), displaying a worldline path integral describing the scattering objects and a QFT path integral in the Born approximation, describing the intermediate bosons exchanged in the scattering event by the massive/massless particles. We introduce the WQFT, by deriving a relation between the Kosower- Maybee-O’Connell (KMOC) limit of amplitudes and worldline path integrals, then, we use that to study the classical Compton amplitude and higher point amplitudes. We also present a nice application of our formulation to the case of Hard Thermal Loops (HTL), by explicitly evaluating hard thermal currents in gauge theory and gravity. Next we move to the investigation of the classical double copy (CDC), which is a powerful tool to generate integrands for classical observables related to the binary inspiralling problem in General Relativity. In order to use a Bern-Carrasco-Johansson (BCJ) like prescription, straight at the classical level, one has to identify a double copy (DC) kernel, encoding the locality structure of the classical amplitude. Such kernel is evaluated by using a theory where scalar particles interacts through bi-adjoint scalars. We show here how to push forward the classical double copy so to account for spinning particles, in the framework of the WQFT. Here the quantization procedure on the worldline allows us to fully reconstruct the quantum theory on the gravitational side. Next we investigate how to describe the scattering of massless particles off black holes in the WQFT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relativistic effects need to be considered in quantum-chemical calculations on systems including heavy elements or when aiming at high accuracy for molecules containing only lighter elements. In the latter case, consideration of relativistic effects via perturbation theory is an attractive option. Among the available techniques, Direct Perturbation Theory (DPT) in its lowest order (DPT2) has become a standard tool for the calculation of relativistic corrections to energies and properties.In this work, the DPT treatment is extended to the next order (DPT4). It is demonstrated that the DPT4 correction can be obtained as a second derivative of the energy with respect to the relativistic perturbation parameter. Accordingly, differentiation of a suitable Lagrangian, thereby taking into account all constraints on the wave function, provides analytic expressions for the fourth-order energy corrections. The latter have been implemented at the Hartree-Fock level and within second-order Møller-Plesset perturbaton theory using standard analytic second-derivative techniques into the CFOUR program package. For closed-shell systems, the DPT4 corrections consist of higher-order scalar-relativistic effects as well as spin-orbit corrections with the latter appearing here for the first time in the DPT series.Relativistic corrections are reported for energies as well as for first-order electrical properties and compared to results from rigorous four-component benchmark calculations in order to judge the accuracy and convergence of the DPT expansion for both the scalar-relativistic as well as the spin-orbit contributions. Additionally, the importance of relativistic effects to the bromine and iodine quadrupole-coupling tensors is investigated in a joint experimental and theoretical study concerning the rotational spectra of CH2BrF, CHBrF2, and CH2FI.