When the Casimir energy is not a sum of zero-point energies


Autoria(s): Albuquerque, Luiz C. de; Cavalcanti, R. M.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

15/02/2002

Resumo

We compute the leading radiative correction to the Casimir force between two parallel plates in the lambdaPhi(4) theory. Dirichlet and periodic boundary conditions are considered. A heuristic approach, in which the Casimir energy is computed as the sum of one-loop corrected zero-point energies, is shown to yield incorrect results, but we show how to amend it. The technique is then used in the case of periodic boundary conditions to construct a perturbative expansion which is free of infrared singularities in the massless limit. In this case we also compute the next-to-leading order radiative correction, which turns out to be proportional to lambda(3/2).

Formato

10

Identificador

http://dx.doi.org/10.1103/PhysRevD.65.045004

Physical Review D. College Pk: American Physical Soc, v. 65, n. 4, 10 p., 2002.

0556-2821

http://hdl.handle.net/11449/38473

10.1103/PhysRevD.65.045004

WOS:000174043800063

WOS000174043800063.pdf

Idioma(s)

eng

Publicador

American Physical Soc

Relação

Physical Review D

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article