937 resultados para P-Closed Space


Relevância:

100.00% 100.00%

Publicador:

Resumo:

∗ Supported by the Serbian Scientific Foundation, grant No 04M01

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding confinement and its complex workings between individuals and society has been the stated aim of carceral geography and wider studies on detention. This project contributes ethnographic insights from multiple sites of incarceration, working with an under-researched group within confined populations. Focussing on young female detainees in Scotland, this project seeks to understand their experiences of different types of ‘closed’ space. Secure care, prison and closed psychiatric facilities all impact on the complex geographies of these young women’s lives. The fluid but always situated relations of control and care provide the backdrop for their journeys in/out and beyond institutional spaces. Understanding institutional journeys with reference to age and gender allows an insight into the highly mobile, often precarious, and unfamiliar lives of these young women who live on the margins. This thesis employs a mixed-method qualitative approach and explores what Goffman calls the ‘tissue and fabric’ of detention as a complex multi-institutional practice. In order to be able to understand the young women’s gendered, emotional and often repetitive experiences of confinement, analysis of the constitution of ‘closed space’ represents a first step for inquiry. The underlying nature of inner regimes, rules and discipline in closed spaces, provide the background on which confinement is lived, perceived and processed. The second part of the analysis is the exploration of individual experiences ‘on the inside’, ranging from young women’s views on entering a closed institution, the ways in which they adapt or resist the regime, and how they cope with embodied aspects of detention. The third and final step considers the wider context of incarceration by recovering the young women’s journeys through different types of institutional spaces and beyond. The exploration of these journeys challenges and re-develops understandings of mobility and inertia by engaging the relative power of carceral archipelagos and the figure of femina sacra. This project sits comfortably within the field of carceral geography while also pushing at its boundaries. On a conceptual level, a re-engagement with Goffman’s micro-analysis challenges current carceral-geographic theory development. Perhaps more importantly, this project pushes for an engagement with different institutions under the umbrella of carceral geography, thus creating new dialogues on issues like ‘care’ and ‘control’. Finally, an engagement with young women addresses an under-represented population within carceral geography in ways that raise distinctly problematic concerns for academic research and penal policy. Overall, this project aims to show the value of fine grained micro-level research in institutional geographies for extending thinking and understanding about society’s responses to a group of people who live on the margins of social and legal norms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

If E and F are real Banach spaces let Cp,q(E, F) O ≤ q ≤ p ≤ ∞, denote those maps from E to F which have p continuous Frechet derivatives of which the first q derivatives are bounded. A Banach space E is defined to be Cp,q smooth if Cp,q(E,R) contains a nonzero function with bounded support. This generalizes the standard Cp smoothness classification.

If an Lp space, p ≥ 1, is Cq smooth then it is also Cq,q smooth so that in particular Lp for p an even integer is C∞,∞ smooth and Lp for p an odd integer is Cp-1,p-1 smooth. In general, however, a Cp smooth B-space need not be Cp,p smooth. Co is shown to be a non-C2,2 smooth B-space although it is known to be C smooth. It is proved that if E is Cp,1 smooth then Co(E) is Cp,1 smooth and if E has an equivalent Cp norm then co(E) has an equivalent Cp norm.

Various consequences of Cp,q smoothness are studied. If f ϵ Cp,q(E,F), if F is Cp,q smooth and if E is non-Cp,q smooth, then the image under f of the boundary of any bounded open subset U of E is dense in the image of U. If E is separable then E is Cp,q smooth if and only if E admits Cp,q partitions of unity; E is Cp,psmooth, p ˂∞, if and only if every closed subset of E is the zero set of some CP function.

f ϵ Cq(E,F), 0 ≤ q ≤ p ≤ ∞, is said to be Cp,q approximable on a subset U of E if for any ϵ ˃ 0 there exists a g ϵ Cp(E,F) satisfying

sup/xϵU, O≤k≤q ‖ Dk f(x) - Dk g(x) ‖ ≤ ϵ.

It is shown that if E is separable and Cp,q smooth and if f ϵ Cq(E,F) is Cp,q approximable on some neighborhood of every point of E, then F is Cp,q approximable on all of E.

In general it is unknown whether an arbitrary function in C1(l2, R) is C2,1 approximable and an example of a function in C1(l2, R) which may not be C2,1 approximable is given. A weak form of C∞,q, q≥1, to functions in Cq(l2, R) is proved: Let {Uα} be a locally finite cover of l2 and let {Tα} be a corresponding collection of Hilbert-Schmidt operators on l2. Then for any f ϵ Cq(l2,F) such that for all α

sup ‖ Dk(f(x)-g(x))[Tαh]‖ ≤ 1.

xϵUα,‖h‖≤1, 0≤k≤q

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aspirin is recommended as a lifelong therapy that should never be interrupted for patients with cardiovascular dis- ease. Clopidogrel therapy is mandatory for six weeks after placement of bare-metal stents, three to six months after myocardial infarction, and at least 12 months after placement of drug-eluting stents. Because of the hypercoagulable state induced by surgery, early withdrawal of antiplatelet therapy for secondary prevention of cardiovascular disease increases the risk of postoperative myocardial infarction and death five- to 10-fold in stented patients who are on continuous dual antiplatelet therapy. The shorter the time between revascularization and surgery, the higher the risk of adverse cardiac events. Elective surgery should be postponed beyond these periods, whereas vital, semiurgent, or urgent operations should be performed under continued dual antiplatelet therapy. The risk of surgical hemorrhage is increased approximately 20 percent by aspirin or clopidogrel alone, and 50 percent by dual antiplatelet therapy. The present clinical data suggest that the risk of a cardiovascular event when stopping antiplatelet agents preoperatively is higher than the risk of surgical bleeding when continuing these drugs, except during surgery in a closed space (e.g., intracranial, posterior eye chamber) or surgeries associated with massive bleeding and difficult hemostasis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider incompressible Stokes flow with an internal interface at which the pressure is discontinuous, as happens for example in problems involving surface tension. We assume that the mesh does not follow the interface, which makes classical interpolation spaces to yield suboptimal convergence rates (typically, the interpolation error in the L(2)(Omega)-norm is of order h(1/2)). We propose a modification of the P(1)-conforming space that accommodates discontinuities at the interface without introducing additional degrees of freedom or modifying the sparsity pattern of the linear system. The unknowns are the pressure values at the vertices of the mesh and the basis functions are computed locally at each element, so that the implementation of the proposed space into existing codes is straightforward. With this modification, numerical tests show that the interpolation order improves to O(h(3/2)). The new pressure space is implemented for the stable P(1)(+)/P(1) mini-element discretization, and for the stabilized equal-order P(1)/P(1) discretization. Assessment is carried out for Poiseuille flow with a forcing surface and for a static bubble. In all cases the proposed pressure space leads to improved convergence orders and to more accurate results than the standard P(1) space. In addition, two Navier-Stokes simulations with moving interfaces (Rayleigh-Taylor instability and merging bubbles) are reported to show that the proposed space is robust enough to carry out realistic simulations. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study which topology have an immediate predecessor in the poset of Sigma(2) of Hausdorff topologies on set X. We show that certain classes of H-closed topologies, do have predecessors. and we give examples of second countable H-closed topologies which are not upper Sigma(2.)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Para estudar os problemas de prospecção geofísica eletromagnética através de modelagem analógica, as condições em escala natural são representadas, no laboratório, em escala reduzida de acordo com a teoria da similitude. Portanto, para investigar os problemas de técnicas VLF, AFMAG e MT, freqüentemente é necessário criar um campo uniforme no arranjo experimental. Os sistemas físicos para geração de campos uniformes estudados aqui são a bobina circular, bobina de Helmholtz, solenóide, um plano de corrente, e dois planos paralelos de correntes. Os mapas de porcentagem de desvio de campo estão presentes para todos os sistemas estudados aqui. Um estudo comparativo desses sistemas mostra que o solenóide é a maneira mais eficiente para criar um campo uniforme, seguido pelo sistema de bobinas de Helmholtz. Porém, o campo criado em um solenóide está em um espaço fechado onde é difícil colocar modelos e substituí-los para executar experimentos. Portanto, recomenda-se o uso de bobinas de Helmholtz para criar um campo uniforme. Este último sistema fornece um campo uniforme com espaço aberto suficiente, o que facilita o experimento.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A mapping scheme is presented which takes quantum operators associated to bosonic degrees of freedom into complex phase space integral kernel representatives. The procedure consists of using the Schrödinger squeezed state as the starting point for the construction of the integral mapping kernel which, due to its inherent structure, is suited for the description of second quantized operators. Products and commutators of operators have their representatives explicitly written which reveal new details when compared to the usual q-p phase space description. The classical limit of the equations of motion for the canonical pair q-p is discussed in connection with the effect of squeezing the quantum phase space cellular structure. © 1993.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper a space X is pseudocompact if it is Tychonoff and every real-valued continuous function on X is bounded. We obtain conditions under which a Tychonoff space is maximal pseudocompact and study conditions under which a regular space is maximal R-closed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The performance of the positive P phase-space representation for exact many- body quantum dynamics is investigated. Gases of interacting bosons are considered, where the full quantum equations to simulate are of a Gross-Pitaevskii form with added Gaussian noise. This method gives tractable simulations of many-body systems because the number of variables scales linearly with the spatial lattice size. An expression for the useful simulation time is obtained, and checked in numerical simulations. The dynamics of first-, second- and third-order spatial correlations are calculated for a uniform interacting 1D Bose gas subjected to a change in scattering length. Propagation of correlations is seen. A comparison is made with other recent methods. The positive P method is particularly well suited to open systems as no conservation laws are hard-wired into the calculation. It also differs from most other recent approaches in that there is no truncation of any kind.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most space applications require deployable structures due to the limiting size of current launch vehicles. Specifically, payloads in nanosatellites such as CubeSats require very high compaction ratios due to the very limited space available in this typo of platform. Strain-energy-storing deployable structures can be suitable for these applications, but the curvature to which these structures can be folded is limited to the elastic range. Thanks to fiber microbuckling, high-strain composite materials can be folded into much higher curvatures without showing significant damage, which makes them suitable for very high compaction deployable structure applications. However, in applications that require carrying loads in compression, fiber microbuckling also dominates the strength of the material. A good understanding of the strength in compression of high-strain composites is then needed to determine how suitable they are for this type of application.

The goal of this thesis is to investigate, experimentally and numerically, the microbuckling in compression of high-strain composites. Particularly, the behavior in compression of unidirectional carbon fiber reinforced silicone rods (CFRS) is studied. Experimental testing of the compression failure of CFRS rods showed a higher strength in compression than the strength estimated by analytical models, which is unusual in standard polymer composites. This effect, first discovered in the present research, was attributed to the variation in random carbon fiber angles respect to the nominal direction. This is an important effect, as it implies that microbuckling strength might be increased by controlling the fiber angles. With a higher microbuckling strength, high-strain materials could carry loads in compression without reaching microbuckling and therefore be suitable for several space applications.

A finite element model was developed to predict the homogenized stiffness of the CFRS, and the homogenization results were used in another finite element model that simulated a homogenized rod under axial compression. A statistical representation of the fiber angles was implemented in the model. The presence of fiber angles increased the longitudinal shear stiffness of the material, resulting in a higher strength in compression. The simulations showed a large increase of the strength in compression for lower values of the standard deviation of the fiber angle, and a slight decrease of strength in compression for lower values of the mean fiber angle. The strength observed in the experiments was achieved with the minimum local angle standard deviation observed in the CFRS rods, whereas the shear stiffness measured in torsion tests was achieved with the overall fiber angle distribution observed in the CFRS rods.

High strain composites exhibit good bending capabilities, but they tend to be soft out-of-plane. To achieve a higher out-of-plane stiffness, the concept of dual-matrix composites is introduced. Dual-matrix composites are foldable composites which are soft in the crease regions and stiff elsewhere. Previous attempts to fabricate continuous dual-matrix fiber composite shells had limited performance due to excessive resin flow and matrix mixing. An alternative method, presented in this thesis uses UV-cure silicone and fiberglass to avoid these problems. Preliminary experiments on the effect of folding on the out-of-plane stiffness are presented. An application to a conical log-periodic antenna for CubeSats is proposed, using origami-inspired stowing schemes, that allow a conical dual-matrix composite shell to reach very high compaction ratios.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

(W0.5Al0.5)C-0.5 substoichiometric compound is synthesized by a combination of mechanical milling and high-pressure reactive sintering. X-ray diffraction is used to monitor the phase changes and crystallization of (W0.5Al0.5) C-0.5 during the whole reaction process. As a result, (W0.5Al0.5) C-0.5 is identified as the hexagonal WC-type belonging to the P-6m2 space group (No. 187), and the lattice parameters of (W0.5Al0.5)C-0.5 are calculated to be a = 2.907 (1) angstrom, c = 2.838 (1) angstrom, which are very similar to those of WC even if there are approximately 50 pct carbon vacancies in the cell of (W0.5Al0.5)C-0.5 as compared with WC. The substoichiometric (W0.5Al0.5)C-0.5 compound has a Vickers microhardness of 2385 +/- 70 kg mm(-2), which is as high as that of WC, while its density is far lower than that of WC.