9 resultados para Operads


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give sufficient conditions for homotopical localization functors to preserve algebras over coloured operads in monoidal model categories. Our approach encompasses a number of previous results about preservation of structures under localizations, such as loop spaces or infinite loop spaces, and provides new results of the same kind. For instance, under suitable assumptions, homotopical localizations preserve ring spectra (in the strict sense, not only up to homotopy), modules over ring spectra, and algebras over commutative ring spectra, as well as ring maps, module maps, and algebra maps. It is principally the treatment of module spectra and their maps that led us to the use of coloured operads (also called enriched multicategories) in this context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a model structure for coloured operads with values in the category of symmetric spectra (with the positive model structure), in which fibrations and weak equivalences are defined at the level of the underlying collections. This allows us to treat R-module spectra (where R is a cofibrant ring spectrum) as algebras over a cofibrant spectrum-valued operad with R as its first term. Using this model structure, we give sufficient conditions for homotopical localizations in the category of symmetric spectra to preserve module structures.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that for a topological operad $P$ the operad of oriented cubical singular chains, $C^{\ord}_\ast(P)$, and the operad of simplicial singular chains, $S_\ast(P)$, are weakly equivalent. As a consequence, $C^{\ord}_\ast(P\nsemi\mathbb{Q})$ is formal if and only if $S_\ast(P\nsemi\mathbb{Q})$ is formal, thus linking together some formality results which are spread out in the literature. The proof is based on an acyclic models theorem for monoidal functors. We give different variants of the acyclic models theorem and apply the contravariant case to study the cohomology theories for simplicial sets defined by $R$-simplicial differential graded algebras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore the relationship between polynomial functors and trees. In the first part we characterise trees as certain polynomial functors and obtain a completely formal but at the same time conceptual and explicit construction of two categories of rooted trees, whose main properties we describe in terms of some factorisation systems. The second category is the category Ω of Moerdijk and Weiss. Although the constructions are motivated and explained in terms of polynomial functors, they all amount to elementary manipulations with finite sets. Included in Part 1 is also an explicit construction of the free monad on a polynomial endofunctor, given in terms of trees. In the second part we describe polynomial endofunctors and monads as structures built from trees, characterising the images of several nerve functors from polynomial endofunctors and monads into presheaves on categories of trees. Polynomial endofunctors and monads over a base are characterised by a sheaf condition on categories of decorated trees. In the absolute case, one further condition is needed, a projectivity condition, which serves also to characterise polynomial endofunctors and monads among (coloured) collections and operads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides an explicit cofibrant resolution of the operad encoding Batalin-Vilkovisky algebras. Thus it defines the notion of homotopy Batalin-Vilkovisky algebras with the required homotopy properties. To define this resolution we extend the theory of Koszul duality to operads and properads that are defined by quadratic and linear relations. The operad encoding Batalin-Vilkovisky algebras is shown to be Koszul in this sense. This allows us to prove a Poincaré-Birkhoff-Witt Theorem for such an operad and to give an explicit small quasi-free resolution for it. This particular resolution enables us to describe the deformation theory and homotopy theory of BV-algebras and of homotopy BV-algebras. We show that any topological conformal field theory carries a homotopy BV-algebra structure which lifts the BV-algebra structure on homology. The same result is proved for the singular chain complex of the double loop space of a topological space endowed with an action of the circle. We also prove the cyclic Deligne conjecture with this cofibrant resolution of the operad BV. We develop the general obstruction theory for algebras over the Koszul resolution of a properad and apply it to extend a conjecture of Lian-Zuckerman, showing that certain vertex algebras have an explicit homotopy BV-algebra structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides an explicit cofibrant resolution of the operad encoding Batalin-Vilkovisky algebras. Thus it defines the notion of homotopy Batalin-Vilkovisky algebras with the required homotopy properties. To define this resolution we extend the theory of Koszul duality to operads and properads that are defind by quadratic and linear relations. The operad encoding Batalin-Vilkovisky algebras is shown to be Koszul in this sense. This allows us to prove a Poincare-Birkhoff-Witt Theorem for such an operad and to give an explicit small quasi-free resolution for it. This particular resolution enables us to describe the deformation theory and homotopy theory of BV-algebras and of homotopy BV-algebras. We show that any topological conformal field theory carries a homotopy BV-algebra structure which lifts the BV-algebra structure on homology. The same result is proved for the singular chain complex of the double loop space of a topological space endowed with an action of the circle. We also prove the cyclic Deligne conjecture with this cofibrant resolution of the operad BV. We develop the general obstruction theory for algebras over the Koszul resolution of a properad and apply it to extend a conjecture of Lian-Zuckerman, showing that certain vertex algebras have an explicit homotopy BV-algebra structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Vorhersagen störungstheoretischer Quantenfeldtheorienzeigen eine gute Übereinstimmung mit experimentellgemessenen Werten. Bei diesen störungstheoretischenBerechnungen treten allerdings Ultraviolettdivergenzen auf,die keine physikalische Interpretation der Ergebnisseermöglichen. Durch Renormierung dieser Theorien erhält manjedoch berechnbare Ergebnisse mit hoher experimentellerVorhersagekraft. Der Renormierungsvorgang kann durch eineHopfalgebra, die sogenannte 'Hopfalgebra der Wurzelbäume',beschrieben werden.Die vorliegende Arbeit leistet einen Beitrag für weitereUntersuchungen dieser Hopfalgebrenstruktur und Bestimmungneuer mathematischer Methoden zur Beschreibung desRenormierungsvorgangs. Dazu wird die algebraische Strukturvon Renormierung aus der Sicht der Kategorientheorie und derTheorie von Operaden untersucht.Aus Sicht der Kategorientheorie lassen sich die den Renormierungsprozess beschreibenden mathematischen Größen ineiner Kategorie zusammenfassen. Eine additive Strukturermöglicht dabei die Berücksichtigung beliebigerRenormierungsschemata. Auf dieser Kategorie kann einassoziativitätsverletzendes Produkt definiert werden, wobeidie Verletzung durch einen sogenannten 'Assoziator'kontrolliert werden kann. Die Struktur wird auf die einerHopfkategorie erweitert, so daß eine kategorientheoretischeUntersuchung des Renormierungsprozesses ermöglicht wird.Diese Hopfkategorie wird aus Sicht von Renormierunginterpretiert, wobei Beispielrechnungen die definierteStruktur verdeutlichen.Aus algebraischer Sicht kann aufgrund der graphischenDarstellung des Operadenproduktes eine Bijektivität zwischenWurzelbäumen und Operaden gezeigt werden. Auf diesenOperaden kann wiederum eine Hopfalgebrenstruktur definiertwerden. Beispiele verdeutlichen diese Bijektivität.