Homotopy Batalin-Vilkovisky algebras
Contribuinte(s) |
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III |
---|---|
Data(s) |
10/05/2012
|
Resumo |
This paper provides an explicit cofibrant resolution of the operad encoding Batalin-Vilkovisky algebras. Thus it defines the notion of homotopy Batalin-Vilkovisky algebras with the required homotopy properties. To define this resolution we extend the theory of Koszul duality to operads and properads that are defind by quadratic and linear relations. The operad encoding Batalin-Vilkovisky algebras is shown to be Koszul in this sense. This allows us to prove a Poincare-Birkhoff-Witt Theorem for such an operad and to give an explicit small quasi-free resolution for it. This particular resolution enables us to describe the deformation theory and homotopy theory of BV-algebras and of homotopy BV-algebras. We show that any topological conformal field theory carries a homotopy BV-algebra structure which lifts the BV-algebra structure on homology. The same result is proved for the singular chain complex of the double loop space of a topological space endowed with an action of the circle. We also prove the cyclic Deligne conjecture with this cofibrant resolution of the operad BV. We develop the general obstruction theory for algebras over the Koszul resolution of a properad and apply it to extend a conjecture of Lian-Zuckerman, showing that certain vertex algebras have an explicit homotopy BV-algebra structure. |
Identificador | |
Idioma(s) |
eng |
Direitos |
Open Access |
Palavras-Chave | #Àrees temàtiques de la UPC::Matemàtiques i estadística::Topologia::Topologia algebraica #Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de categories; àlgebra homològica #Algebra, Homological GEC #Homotopy theory #Algebraic topology #Àlgebra homològica #Topologia algebraica #Homotopia, Teoria de l' #Classificació AMS::18 Category theory; homological algebra::18D Categories with structure #Classificació AMS::18 Category theory; homological algebra::18G Homological algebra #Classificació AMS::55 Algebraic topology::55P Homotopy theory #Classificació AMS::81 Quantum theory::81T Quantum field theory; related classical field theories #Classificació AMS::17 Nonassociative rings and algebras::17B Lie algebras and Lie superalgebras |
Tipo |
info:eu-repo/semantics/other |