Monoidal functors, acyclic models and chain operads


Autoria(s): Guillén Santos, Francisco; Navarro, Vicenç (Navarro Aznar); Pascual, Pere (Pascual i Gainza); Roig Martí, Agustí
Contribuinte(s)

Universitat de Barcelona

Resumo

We prove that for a topological operad $P$ the operad of oriented cubical singular chains, $C^{\ord}_\ast(P)$, and the operad of simplicial singular chains, $S_\ast(P)$, are weakly equivalent. As a consequence, $C^{\ord}_\ast(P\nsemi\mathbb{Q})$ is formal if and only if $S_\ast(P\nsemi\mathbb{Q})$ is formal, thus linking together some formality results which are spread out in the literature. The proof is based on an acyclic models theorem for monoidal functors. We give different variants of the acyclic models theorem and apply the contravariant case to study the cohomology theories for simplicial sets defined by $R$-simplicial differential graded algebras.

Identificador

http://hdl.handle.net/2445/34464

Idioma(s)

eng

Publicador

Canadian Mathematical Society.

Direitos

, 2008

info:eu-repo/semantics/openAccess

Palavras-Chave #Àlgebra homològica #Topologia algebraica #Homological algebra #Algebraic topology
Tipo

info:eu-repo/semantics/article