941 resultados para Non-Fourier heat conduction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-Fourier models of heat conduction are increasingly being considered in the modeling of microscale heat transfer in engineering and biomedical heat transfer problems. The dual-phase-lagging model, incorporating time lags in the heat flux and the temperature gradient, and some of its particular cases and approximations, result in heat conduction modeling equations in the form of delayed or hyperbolic partial differential equations. In this work, the application of difference schemes for the numerical solution of lagging models of heat conduction is considered. Numerical schemes for some DPL approximations are developed, characterizing their properties of convergence and stability. Examples of numerical computations are included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different non-Fourier models of heat conduction, that incorporate time lags in the heat flux and/or the temperature gradient, have been increasingly considered in the last years to model microscale heat transfer problems in engineering. Numerical schemes to obtain approximate solutions of constant coefficients lagging models of heat conduction have already been proposed. In this work, an explicit finite difference scheme for a model with coefficients variable in time is developed, and their properties of convergence and stability are studied. Numerical computations showing examples of applications of the scheme are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract not available

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual-phase-lagging (DPL) models constitute a family of non-Fourier models of heat conduction that allow for the presence of time lags in the heat flux and the temperature gradient. These lags may need to be considered when modeling microscale heat transfer, and thus DPL models have found application in the last years in a wide range of theoretical and technical heat transfer problems. Consequently, analytical solutions and methods for computing numerical approximations have been proposed for particular DPL models in different settings. In this work, a compact difference scheme for second order DPL models is developed, providing higher order precision than a previously proposed method. The scheme is shown to be unconditionally stable and convergent, and its accuracy is illustrated with numerical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of heat conduction in one-dimensional piecewise homogeneous composite materials is examined by providing an explicit solution of the one-dimensional heat equation in each domain. The location of the interfaces is known, but neither temperature nor heat flux are prescribed there. Instead, the physical assumptions of their continuity at the interfaces are the only conditions imposed. The problem of two semi-infinite domains and that of two finite-sized domains are examined in detail. We indicate also how to extend the solution method to the setting of one finite-sized domain surrounded on both sides by semi-infinite domains, and on that of three finite-sized domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inverse heat conduction problems (IHCPs) appear in many important scientific and technological fields. Hence analysis, design, implementation and testing of inverse algorithms are also of great scientific and technological interest. The numerical simulation of 2-D and –D inverse (or even direct) problems involves a considerable amount of computation. Therefore, the investigation and exploitation of parallel properties of such algorithms are equally becoming very important. Domain decomposition (DD) methods are widely used to solve large scale engineering problems and to exploit their inherent ability for the solution of such problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a survey on different numerical interpolation schemes used for two-phase transient heat conduction problems in the context of interface capturing phase-field methods. Examples are general transport problems in the context of diffuse interface methods with a non-equal heat conductivity in normal and tangential directions to the interface. We extend the tonsorial approach recently published by Nicoli M et al (2011 Phys. Rev. E 84 1-6) to the general three-dimensional (3D) transient evolution equations. Validations for one-dimensional, two-dimensional and 3D transient test cases are provided, and the results are in good agreement with analytical and numerical reference solutions.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reproducing Fourier's law of heat conduction from a microscopic stochastic model is a long standing challenge in statistical physics. As was shown by Rieder, Lebowitz and Lieb many years ago, a chain of harmonically coupled oscillators connected to two heat baths at different temperatures does not reproduce the diffusive behaviour of Fourier's law, but instead a ballistic one with an infinite thermal conductivity. Since then, there has been a substantial effort from the scientific community in identifying the key mechanism necessary to reproduce such diffusivity, which usually revolved around anharmonicity and the effect of impurities. Recently, it was shown by Dhar, Venkateshan and Lebowitz that Fourier's law can be recovered by introducing an energy conserving noise, whose role is to simulate the elastic collisions between the atoms and other microscopic degrees of freedom, which one would expect to be present in a real solid. For a one-dimensional chain this is accomplished numerically by randomly flipping - under the framework of a Poisson process with a variable “rate of collisions" - the sign of the velocity of an oscillator. In this poster we present Langevin simulations of a one-dimensional chain of oscillators coupled to two heat baths at different temperatures. We consider both harmonic and anharmonic (quartic) interactions, which are studied with and without the energy conserving noise. With these results we are able to map in detail how the heat conductivity k is influenced by both anharmonicity and the energy conserving noise. We also present a detailed analysis of the behaviour of k as a function of the size of the system and the rate of collisions, which includes a finite-size scaling method that enables us to extract the relevant critical exponents. Finally, we show that for harmonic chains, k is independent of temperature, both with and without the noise. Conversely, for anharmonic chains we find that k increases roughly linearly with the temperature of a given reservoir, while keeping the temperature difference fixed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MANY TRANSPORprTo cesses occur in nature and in industrial applications in which the transfer of heat is governed by the process of natural convection. Natural convection arises in fluids when the temperature changes cause density variations leading to buoyancy forces. An excellent review of natural convection flows has been given by Ede [I]. Recently, Minkowycz and Sparrow [2, 31, Cebeci [4], and Aziz and Na [S] have studied the steady, laminar, incompressible, natural convection flow over a vertical cylinder using a local nonsimilarity method, a finite-difference scheme, and an improved perturbation method, respectively. However, they did not take into account the effect ofaxial heat conduction for small Prandtl number. It is known that the axial heat conductioneffect becomesimportant for low-Prandtl-number fluids such as a liquid metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical solution of a 2-dimensional problem of solidification of a superheated liquid in a semi-infinite mould has been studied in this paper. On the boundary, the prescribed temperature is such that the solidification starts simultaneously at all points of the boundary. Results are also given for the 2-dimensional ablation problem. The solution of the heat conduction equation has been obtained in terms of multiple Laplace integrals involving suitable unknown fictitious initial temperatures. These fictitious initial temperatures have interesting physical interpretations. By choosing suitable series expansions for fictitious initial temperatures and moving interface boundary, the unknown quantities can be determined. Solidification thickness has been calculated for short time and effect of parameters on the solidification thickness has been shown with the help of graphs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical short time solution of moving boundary in heat conduction in a cylindrical mould under prescribed flux boundary condition has been studied in this paper. Partial differential equations are converted to integro-differential equations. These integro-differential equations which are coupled have been solved analytically for short time by choosing suitable series expansions for the unknown quantitities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal diffusivity and conductivity of hot pressed ZrB2 with different amounts of B4C (0-5 wt%) and ZrB2-SiC composites (10-30 vol% SiC) were investigated experimentally over a wide range of temperature (25-1500 degrees C). Both thermal diffusivity and thermal conductivity were found to decrease with increase in temperature for all the hot pressed ZrB2 and ZrB2-SiC composites. At around 200 degrees C, thermal conductivity of ZrB2-SiC composites was found to be composition independent. Thermal conductivity of ZrB2-SiC composites was also correlated with theoretical predictions of the Maxwell Eucken relation. The dominated mechanisms of heat transport for all hot pressed ZrB2 and ZrB2-SiC composites at room temperature were confirmed by Wiedemann Franz analysis by using measured electrical conductivity of these materials at room temperature. It was found that electronic thermal conductivity dominated for all monolithic ZrB2 whereas the phonon contribution to thermal conductivity increased with SiC contents for ZrB2-SiC composites.