Difference schemes for numerical solutions of lagging models of heat conduction


Autoria(s): Cabrera Sánchez, Jesús; Castro, María Ángeles; Rodríguez, Francisco; Martín Alustiza, José Antonio
Contribuinte(s)

Universidad de Alicante. Departamento de Matemática Aplicada

Ecuaciones Diferenciales con Retardo

Análisis de Datos y Modelización de Procesos en Biología y Geociencias

Data(s)

28/01/2015

28/01/2015

01/04/2013

Resumo

Non-Fourier models of heat conduction are increasingly being considered in the modeling of microscale heat transfer in engineering and biomedical heat transfer problems. The dual-phase-lagging model, incorporating time lags in the heat flux and the temperature gradient, and some of its particular cases and approximations, result in heat conduction modeling equations in the form of delayed or hyperbolic partial differential equations. In this work, the application of difference schemes for the numerical solution of lagging models of heat conduction is considered. Numerical schemes for some DPL approximations are developed, characterizing their properties of convergence and stability. Examples of numerical computations are included.

Identificador

Mathematical and Computer Modelling. 2013, 57(7-8): 1625-1632. doi:10.1016/j.mcm.2011.10.048

0895-7177 (Print)

1872-9479 (Online)

http://hdl.handle.net/10045/44393

10.1016/j.mcm.2011.10.048

Idioma(s)

eng

Publicador

Elsevier

Relação

http://dx.doi.org/10.1016/j.mcm.2011.10.048

Direitos

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #Non-Fourier heat conduction #DPL models #Finite differences #Convergence and stability #Matemática Aplicada
Tipo

info:eu-repo/semantics/article