Difference schemes for numerical solutions of lagging models of heat conduction
Contribuinte(s) |
Universidad de Alicante. Departamento de Matemática Aplicada Ecuaciones Diferenciales con Retardo Análisis de Datos y Modelización de Procesos en Biología y Geociencias |
---|---|
Data(s) |
28/01/2015
28/01/2015
01/04/2013
|
Resumo |
Non-Fourier models of heat conduction are increasingly being considered in the modeling of microscale heat transfer in engineering and biomedical heat transfer problems. The dual-phase-lagging model, incorporating time lags in the heat flux and the temperature gradient, and some of its particular cases and approximations, result in heat conduction modeling equations in the form of delayed or hyperbolic partial differential equations. In this work, the application of difference schemes for the numerical solution of lagging models of heat conduction is considered. Numerical schemes for some DPL approximations are developed, characterizing their properties of convergence and stability. Examples of numerical computations are included. |
Identificador |
Mathematical and Computer Modelling. 2013, 57(7-8): 1625-1632. doi:10.1016/j.mcm.2011.10.048 0895-7177 (Print) 1872-9479 (Online) http://hdl.handle.net/10045/44393 10.1016/j.mcm.2011.10.048 |
Idioma(s) |
eng |
Publicador |
Elsevier |
Relação |
http://dx.doi.org/10.1016/j.mcm.2011.10.048 |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Palavras-Chave | #Non-Fourier heat conduction #DPL models #Finite differences #Convergence and stability #Matemática Aplicada |
Tipo |
info:eu-repo/semantics/article |