A compact difference scheme for numerical solutions of second order dual-phase-lagging models of microscale heat transfer
Contribuinte(s) |
Universidad de Alicante. Departamento de Matemática Aplicada Análisis de Datos y Modelización de Procesos en Biología y Geociencias Ecuaciones Diferenciales con Retardo |
---|---|
Data(s) |
28/08/2015
28/08/2015
01/01/2016
|
Resumo |
Dual-phase-lagging (DPL) models constitute a family of non-Fourier models of heat conduction that allow for the presence of time lags in the heat flux and the temperature gradient. These lags may need to be considered when modeling microscale heat transfer, and thus DPL models have found application in the last years in a wide range of theoretical and technical heat transfer problems. Consequently, analytical solutions and methods for computing numerical approximations have been proposed for particular DPL models in different settings. In this work, a compact difference scheme for second order DPL models is developed, providing higher order precision than a previously proposed method. The scheme is shown to be unconditionally stable and convergent, and its accuracy is illustrated with numerical examples. This work was partially funded by grant GRE12-08 from University of Alicante. |
Identificador |
Journal of Computational and Applied Mathematics. 2016, 291: 432-440. doi:10.1016/j.cam.2014.11.006 0377-0427 (Print) 1879-1778 (Online) http://hdl.handle.net/10045/48949 10.1016/j.cam.2014.11.006 |
Idioma(s) |
eng |
Publicador |
Elsevier |
Relação |
http://dx.doi.org/10.1016/j.cam.2014.11.006 |
Direitos |
© 2014 Elsevier B.V. info:eu-repo/semantics/embargoedAccess |
Palavras-Chave | #Non-Fourier heat conduction #DPL models #Finite differences #Convergence and stability #Matemática Aplicada |
Tipo |
info:eu-repo/semantics/article |