975 resultados para ND-YVO4 LASER
Resumo:
We demonstrate, for the first time as far as Re known, a passively Q-switched operation of a Nd:YVO4 laser in which a Cr4+:YAG crystal and a laser-diode bar are used as the saturable absorber and the pump source, respectively. Stable laser pulses as short as 28 ns with 20-mu J energy can be generated with this laser, which has the advantages of simplicity, high efficiency, and good long-term stability. (C) 1997 Optical Society of America.
Resumo:
We have demonstrated a compact and an efficient passively Q-switched microchip Nd:YVO4 laser by using a composite semiconductor absorber as well as an output coupler. The composite semiconductor absorber was composed of an LT (low-temperature grown) In0.25Ga0.75As absorber and a pure GaAs absorber. To our knowledge, it was the first demonstration of the special absorber for Q-switching operation of microchip lasers. Laser pulses with durations of 1.1 ns were generated with a 350 mu m thick laser crystal and the repetition rate of the pulses was as high as 4.6 MHz. The average output power was 120 mW at the pump power of 700 mW. Pulse duration can be varied from 1.1 to 15.7 ns by changing the cavity length from 0.45 to 5 mm. Pulses with duration of 1.67 and 2.41 ns were also obtained with a 0.7 mm, thick laser crystal and a 1 mm thick laser crystal, respectively. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
A diode-pumped passively mode-locked Nd YVO4 laser with a five-mirror folded cavity is presented by using a semiconductor saturable absorber mirror (SESAM). The temperature distribution and thermal lensing in laser medium are numerically analyzed to design a special cavity which can keep the power density on SESAM under its damage threshold. Both the Q-switched and continuous-wave mode-locked operation are experimentally realized. The maximum average output power of 8.94 W with a 9.3 ps pulse width at a repetition rate of 111 MHz is obtained under a pump power of 24 W, correspondingly the optical slope efficiency is 39.2%. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
By using a semiconductor saturable-absorber output coupler as a mode-locking device, we experimentally realized the operation of a diode-pumped passively mode-locked Nd:YVO4 laser. Stable laser pulses with duration of 2.3 ps were generated at the output power of about 1 W. With increasing the pump power to 9 W, the maximum mode-locked power of 1.7 W was obtained, which corresponds to a slope conversion efficiency of 44% and optical-to-optical conversion efficiency of 19%.
Resumo:
We have demonstrated stable self-starting passive mode-locking in a diode-end-pumped Nd: YVO4 laser using a semiconductor saturable absorber mirror (SESAM). An ln(0.25)Ga(0.75)As single quantum-well SESAM, which was grown by the metalorganic chemical-vapor deposition technique at low temperature, acts as a passive mode-locking device and an output coupler at the same time. Continuous-wave mode-locked transform-limited pulses were obtained at 1064 nm with a pulse duration of 2.1 ps and an average output power of 1.28 W at a repetition rate of 96.5 MHz. (c) 2005 American Institute of Physics.
Resumo:
We have demonstrated a passively Q-switched and mode-locked Nd:YVO4 laser with an intracavity composite semiconductor saturable absorber (ICSSA). Stable Q-switched and mode-locked pulses with Q-switched envelope pulse duration of 180 ns and pulse repetition rate of 72KHz have been obtained. The maximum average output power was 1.45W at 8W incident pump power. The repetition rate of the mode-locked pulses inside the Q-switched envelope was 154 MHz. Experimental results revealed that this ICSSA was suitable for Q-switched and mode-locked solid-state lasers. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Using a low temperature grown GaAs wafer as an intracavity saturable absorber, a temporal envelope duration of 11 ns of Q- switched and mode- locked ( QML) 1064 nm operation was achieved in a very simple compact plane- concave cavity Nd: YVO4 laser, it was so short that the pulses can be used as Q- switching pulses. The maximal average output power is 808 mW with the repetition rate of 25 kHz, and the corresponding peak power and energy of a single Q- switched pulse was 2.94 kW and 32.3 mu J, respectively. The mode- locked pulse trains inside the Q- switched pulse envelope had a repetition rate of 800 MHz.
Resumo:
A high-power continuous wave (cw) mode-locked Nd:YVO4 solid-state laser was demonstrated by use of a semiconductor absorber mirror (SAM). The maximum average output power was 8.1 W and the optic-to-optic conversion efficiency was about 41 %. At the maximum incident pump power, the pulse width was about 8.6 ps and the repetition rate was 130 MHz. Experimental results indicated that this absorber was suitable for high power mode-locked solid-state lasers. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
By using a composite semiconductor absorber and an output coupler, we demonstrated a Q-switched and mode-locked diode-pumped microchip Nd:YVO4 laser. With a 350-mu m-thick crystal, the width of the Q-switched envelope was as short as 12 ns; the repetition rate of the mode-locked pulses inside the Q-switched pulse was more than 10 GHz. The average output power was 335 mW at a maximum pump power of 1.6 W. Q-switched envelope widths of 21 and 31 ns were also achieved with crystals 0.7 and 1.0 mm thick, respectively.
Resumo:
Semiconductor saturable absorber mirrors (SESAMs) with GaAs/air interface relaxation region have less nonsaturable loss than those with low temperature grown In0.25Ga0.75As relaxation region. A thin layer Of SiO2 and a high reflectivity film Of Si/(SiO2/Si)(4) were coated on the SESAMs, respectively in order to improve the SESAM's threshold for damage. The passively continuous wave mode-locked lasers with two such SESAMs were demonstrated, and the SESAM with high reflectivity film of Si/(SiO2/Si)(4) is proved to be helpful for high output power. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
A diode-pumped Nd:YVO4 laser passively Q switched by a semiconductor absorber is demonstrated. The Q-switched operation of the laser has an average output power of 135 mW with a 1.6 W incident pump power. The minimum pulse width is measured to be about 8.3 ns with a repetition rate of 2 MHz. To our knowledge, this is the first demonstration of a solid-state laser passively Q-switched by such a composite semiconductor absorber. (c) 2006 Optical Society of America.
Resumo:
A simple cw mode-locked solid-state laser, which is end-pumped by a low-power laser diode, was demonstrated by optimizing the laser-mode size inside the gain medium. The optimum ratio between mode and pump spot sizes inside the laser crystal was estimated for a cw mode-locked laser, taking into account the input pump power. Calculation and experiment have shown that the optimum ratio was about 3 when the pump power is 2 W, which is different from the value regularly used in passively mode-locked solid-state lasers. This conclusion is also helpful in increasing the efficiency of high-power ultrashort lasers. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We have demonstrated an efficient and compact passively Q-switched and mode-locked (QML) 1064 nm Nd:YVO4 laser by using a low temperature grown GaAs (LT-GaAs) saturable absorber as well as an output coupler. Stable QML with envelope duration as short as 10 ns and Q-switched repetition rate of 36 kHz was obtained. It is the shortest envelope duration as far as we know, and it is so short that it can be used as Q-switching pulses directly. At 6.9 W of the incident pump power, average output power of 1.24 W was achieved and the corresponding peak power and energy of a single Q-switched pulse were 3.44 kW and 34.4 mu J, respectively. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 780 MHz. (C) 2005 Elsevier B.V. All rights reserved.