912 resultados para Meat, Smoked
Resumo:
Updated occasionally by Amendments.
Resumo:
This thesis Entitled Studies on the Utilization of selected Species of sharks. The present study is the result of work carried out for 5 years, during the period from April, 1983 to March 1988. The materials were collected from the catches of the Government of India vessels, operated along the south west coast of India and landed in the Integrated Fisheries Project, Cochin—16. The sharks were caught by different types of gears such as bottom trawls, pelagic trawls, long line etc. A number of species of sharks were landed during this period and three species were selected for the present study namely Scoliodon palasorra (bleeker 1853, grey Shark), Carcharhinus limbatus (valenciennes 1839,black tip shark ) and centrophorus granulosus (bloch and schneider 1801 ,spiny shark). During this study period the quantity of shark utilized was 12,55,942 kg out of which 9.71% used for the production of Dressed shark; 36.21% for the production of Fillets; 49.09% converted into Dried shark and 4.99% was domesticallyy marketed as whole form. Besides this 526 kg of dried shark fin and 289.25 kg of shark fin rays were produced.The effect of Smoking of shark fillets and minced meat at different temperature were also studied during this period. Canning of cooked shark meat, smoked fillets and fish balls were carried out in media like brine, vegetable oil, tomato sauce etc. The quality of smoked fillets in vegetable oil was found superior to other canned products from shark meat.During this study an attempt was also made to evaluate the commercial processing of shark resources and found feasible.
Resumo:
Texte issu d’une conférence donnée à Brown University : Bauer, O. (2014, 23-25 octobre). Bagel, Bagelry, Smoked Meat and Deli as the Jewish Part of Montreal’s Culinary Heritage. Communication présenté lors du colloque Food Heritage, Hybridity & Locality: An International Conference, Brown University.
Resumo:
A critical examination of the market quality of split, dried and smoked bream (Tilapia spp.) was chemically, bacteriologically and organoleptically conducted for the period of August 1968 to January 1969. The aim of this survey was to obtain basic information for the development of national quality standards for the commodity. Relationships of cooked meat score to pH, fish size, appearance and smell score, and water content wcre significantly correlated and responsive. Therefore, these parameters were proposed to be used as indices for the quality standards of the products.
Resumo:
Strain ST211CH, identified as a strain of Enterococcus faecium, isolated from Lombo produced a bacteriocin that inhibited the growth of Enterococcus spp., Listeria spp., Klebsiella spp., Lactobacillus spp., Pseudomonas spp., Staphylococcus spp. and Streptococcus spp. The mode of action of the bacteriocin named as bacteriocin ST211Ch was bactericidal against Enterococcus faecalis ATCC19443. As determined by Tricine-SDS-PAGE, the approximate molecular mass of the bacteriocin was 8.0 kDa. Loss in antimicrobial activity was recorded after treatment with proteolytic enzymes. Maximum activity of bacteriocin ST211Ch was measured in broth cultures of E. faecium strain ST211Ch after 24 h; thereafter, the activity was reduced. Bacteriocin ST211Ch remained active after exposure to various temperatures and pHs, as well as to Triton X-100, Tween-80, Tween-20, sodium dodecyl sulfate, NaCl, urea and EDTA. Effect of media components on production of bacteriocin ST211Ch was also studied. On the basis of PCR reactions targeting different bacteriocin genes, i.e. enterocins, curvacins and sakacins, no evidences for the presence of these genes in the total DNA of E. faecium strain ST211Ch was obtained. The bacterium most probably produced a bacteriocin different from those mentioned above. Based on the antimicrobial spectrum, stability and mode of action of bacteriocin ST211CH, E. faecium strain ST211Ch might be considered as a potential candidate with beneficial properties for use in biopreservation to control food spoilage bacteria.
Resumo:
Meat/meat alternatives (M/MA) are key sources of Fe, Zn and protein, but intake tends to be low in young children. Australian recommendations state that Fe-rich foods, including M/MA, should be the first complementary foods offered to infants. The present paper reports M/MA consumption of Australian infants and toddlers, compares intake with guidelines, and suggests strategies to enhance adherence to those guidelines. Mother–infant dyads recruited as part of the NOURISH and South Australian Infants Dietary Intake studies provided 3 d of intake data at three time points: Time 1 (T1) (n 482, mean age 5·5 (SD 1·1) months), Time 2 (T2) (n 600, mean age 14·0 (SD 1·2) months) and Time 3 (T3) (n 533, mean age 24 (SD 0·7) months). Of 170 infants consuming solids and aged greater than 6 months at T1, 50 (29 %) consumed beef, lamb, veal (BLV) or pork on at least one of 3 d. Commercial infant foods containing BLV or poultry were the most common form of M/MA consumed at T1, whilst by T2 BLV mixed dishes (including pasta bolognaise) became more popular and remained so at T3. The processed M/MA increased in popularity over time, led by pork (including ham). The present study shows that M/MA are not being eaten by Australian infants or toddlers regularly enough; or in adequate quantities to meet recommendations; and that the form in which these foods are eaten can lead to smaller M/MA serve sizes and greater Na intake. Parents should be encouraged to offer M/MA in a recognisable form, as one of the first complementary foods, in order to increase acceptance at a later age.
Resumo:
In August of 2010, Anna Salleh of the Science Unit of the Australian Broadcasting Corporation broke a story about Monsanto seeking to patent the enhancement of meat, including omega-3 fatty acids: ‘Enhanced port is sparking debate over the ethics of placing patents on food. Patent applications covering the enhancement of meat, including pork with omega-3 fatty acids, are stimulating debate over the ethics and legalities of claiming intellectual property over food. Monsanto has filed patents that cover the feeding of animals soybeans, which have been genetically modified by the company to contain stearidonic acid (SDA), a plant-derived omega-3 fatty acid... Omega-3s have been linked to improved cardiovascular health and there are many companies engineering them into foodstuffs. But the new patent applications have touched a raw nerve among those who see them as an attempt by the company to exert control over the food chain.’ This article providers a critical evaluation of the controversy of Monsanto’s patent applications, and the larger issues over patenting food. It first considers the patent portfolio of Monsanto; the nature of the patent claims; and the examination of the claims by patent examiners. Second, it examines the withdrawal and revision of the patent claims by Monsanto in the wake of criticism by patent authorities and the public disquiet over the controversial application. Third, this article considers the larger policy issues raised by Monsanto’s patent applications – including the patenting of plants, animals, and foodstuffs. There is also a consideration of the impact of patents upon the administration of health-care, competition, and research.
Resumo:
A single-generation dataset consisting of 1,730 records from a selection program for high growth rate in giant freshwater prawn (GFP, Macrobrachium rosenbergii) was used to derive prediction equations for meat weight and meat yield. Models were based on body traits [body weight, total length and abdominal width (AW)] and carcass measurements (tail weight and exoskeleton-off weight). Lengths and width were adjusted for the systematic effects of selection line, male morphotypes and female reproductive status, and for the covariables of age at slaughter within sex and body weight. Body and meat weights adjusted for the same effects (except body weight) were used to calculate meat yield (expressed as percentage of tail weight/body weight and exoskeleton-off weight/body weight). The edible meat weight and yield in this GFP population ranged from 12 to 15 g and 37 to 45 %, respectively. The simple (Pearson) correlation coefficients between body traits (body weight, total length and AW) and meat weight were moderate to very high and positive (0.75–0.94), but the correlations between body traits and meat yield were negative (−0.47 to −0.74). There were strong linear positive relationships between measurements of body traits and meat weight, whereas relationships of body traits with meat yield were moderate and negative. Step-wise multiple regression analysis showed that the best model to predict meat weight included all body traits, with a coefficient of determination (R 2) of 0.99 and a correlation between observed and predicted values of meat weight of 0.99. The corresponding figures for meat yield were 0.91 and 0.95, respectively. Body weight or length was the best predictor of meat weight, explaining 91–94 % of observed variance when it was fitted alone in the model. By contrast, tail width explained a lower proportion (69–82 %) of total variance in the single trait models. It is concluded that in practical breeding programs, improvement of meat weight can be easily made through indirect selection for body trait combinations. The improvement of meat yield, albeit being more difficult, is possible by genetic means, with 91 % of the variation in the trait explained by the body and carcass traits examined in this study.
Resumo:
The recent introduction to Australia of superior sheep meat breeds from South Africa provides a basis for improving the quality and amount of sheep meat grown in Queensland’s semi arid area. Alternatively suitable breeds from existing Australian stocks of dual purpose and traditional terminal meat sheep may bring the desired attributes required by the market place. There has been no critical assessment of sheep meat breeds suitably adapted to the rangeland environment of western Queensland. Animal production for a consuming world : proceedings of 9th Congress of the Asian-Australasian Association of Animal Production Societies [AAAP] and 23rd Biennial Conference of the Australian Society of Animal Production [ASAP] and 17th Annual Symposium of the University of Sydney, Dairy Research Foundation, [DRF]. 2-7 July 2000, Sydney, Australia.