935 resultados para Mathematics, speciality: Probability and Statistics
Resumo:
Now in its sixth edition, the Traffic Engineering Handbook continues to be a must have publication in the transportation industry, as it has been for the past 60 years. The new edition provides updated information for people entering the practice and for those already practicing. The handbook is a convenient desk reference, as well as an all in one source of principles and proven techniques in traffic engineering. Most chapters are presented in a new format, which divides the chapters into four areas-basics, current practice, emerging trends and information sources. Chapter topics include road users, vehicle characteristics, statistics, planning for operations, communications, safety, regulations, traffic calming, access management, geometrics, signs and markings, signals, parking, traffic demand, maintenance and studies. In addition, as the focus in transportation has shifted from project based to operations based, two new chapters have been added-"Planning for Operations" and "Managing Traffic Demand to Address Congestion: Providing Travelers with Choices." The Traffic Engineering Handbook continues to be one of the primary reference sources for study to become a certified Professional Traffic Operations Engineer™. Chapters are authored by notable and experienced authors, and reviewed and edited by a distinguished panel of traffic engineering experts.
Resumo:
Probability and Statistics—Selected Problems is a unique book for senior undergraduate and graduate students to fast review basic materials in Probability and Statistics. Descriptive statistics are presented first, and probability is reviewed secondly. Discrete and continuous distributions are presented. Sample and estimation with hypothesis testing are presented in the last two chapters. The solutions for proposed excises are listed for readers to references.
Resumo:
An introductory course in probability and statistics for third-year and fourth-year electrical engineering students is described. The course is centered around several computer-based projects that are designed to achieve two objectives. First, the projects illustrate the course topics and provide hands-on experience for the students. The second and equally important objective of the projects is to convey the relevance and usefulness of probability and statistics to practical problems that undergraduate students can appreciate. The benefit of this course as to motivate electrical engineering students to excel in the study of probability concepts, instead of viewing the subject as one more course requirement toward graduation. The authors co-teach the course, and MATLAB is used for mast of the computer-based projects
Resumo:
Probability and Statistics were included in the Basic General Education curricula by the Ministry of Public Education (Costa Rica), since 1995. To analyze the teaching reality in these fields, a research was conducted in two educational regions of the country: Heredia and Pérez Zeledón. The survey included university training and updating processes of teachers teaching Statistics and Probability in the schools. The research demonstrated the limited university training in these fields, the dissatisfaction of teachers about it, and the poor support of training institutions to their professional exercise.
Resumo:
Extreme rainfall events have triggered a significant number of flash floods in Madeira Island along its past and recent history. Madeira is a volcanic island where the spatial rainfall distribution is strongly affected by its rugged topography. In this thesis, annual maximum of daily rainfall data from 25 rain gauge stations located in Madeira Island were modelled by the generalised extreme value distribution. Also, the hypothesis of a Gumbel distribution was tested by two methods and the existence of a linear trend in both distributions parameters was analysed. Estimates for the 50– and 100–year return levels were also obtained. Still in an univariate context, the assumption that a distribution function belongs to the domain of attraction of an extreme value distribution for monthly maximum rainfall data was tested for the rainy season. The available data was then analysed in order to find the most suitable domain of attraction for the sampled distribution. In a different approach, a search for thresholds was also performed for daily rainfall values through a graphical analysis. In a multivariate context, a study was made on the dependence between extreme rainfall values from the considered stations based on Kendall’s τ measure. This study suggests the influence of factors such as altitude, slope orientation, distance between stations and their proximity of the sea on the spatial distribution of extreme rainfall. Groups of three pairwise associated stations were also obtained and an adjustment was made to a family of extreme value copulas involving the Marshall–Olkin family, whose parameters can be written as a function of Kendall’s τ association measures of the obtained pairs.
Resumo:
With rapid and continuing growth of learning support initiatives in mathematics and statistics found in many parts of the world, and with the likelihood that this trend will continue, there is a need to ensure that robust and coherent measures are in place to evaluate the effectiveness of these initiatives. The nature of learning support brings challenges for measurement and analysis of its effects. After briefly reviewing the purpose, rationale for, and extent of current provision, this article provides a framework for those working in learning support to think about how their efforts can be evaluated. It provides references and specific examples of how workers in this field are collecting, analysing and reporting their findings. The framework is used to structure evaluation in terms of usage of facilities, resources and services provided, and also in terms of improvements in performance of the students and staff who engage with them. Very recent developments have started to address the effects of learning support on the development of deeper approaches to learning, the affective domain and the development of communities of practice of both learners and teachers. This article intends to be a stimulus to those who work in mathematics and statistics support to gather even richer, more valuable, forms of data. It provides a 'toolkit' for those interested in evaluation of learning support and closes by referring to an on-line resource being developed to archive the growing body of evidence. © 2011 Taylor & Francis.
Resumo:
This paper looks at the application of some of the assessment methods in practice with the view to enhance students’ learning in mathematics and statistics. It explores the effective application of assessment methods and highlights the issues or problems, and ways of avoiding them, related to some of the common methods of assessing mathematical and statistical learning. Some observations made by the author on good assessment practice and useful approaches employed at his institution in designing and applying assessment methods are discussed. Successful strategies in implementing assessment methods at different levels are described.
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
The talk starts out with a short introduction to the philosophy of probability. I highlight the need to interpret probabilities in the sciences and motivate objectivist accounts of probabilities. Very roughly, according to such accounts, ascriptions of probabilities have truth-conditions that are independent of personal interests and needs. But objectivist accounts are pointless if they do not provide an objectivist epistemology, i.e., if they do not determine well-defined methods to support or falsify claims about probabilities. In the rest of the talk I examine recent philosophical proposals for an objectivist methodology. Most of them take up ideas well-known from statistics. I nevertheless find some proposals incompatible with objectivist aspirations.
Resumo:
This is a continuation of the earlier work (Publ. Res. Inst. Math. Sci. 45 (2009) 745-785) to characterize unitary stationary independent increment Gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with technical assumptions on the domain of the generator, unitary equivalence of the process to the solution of an appropriate Hudson-Parthasarathy equation is proved.
Resumo:
The A-level Mathematics qualification is based on a compulsory set of pure maths modules and a selection of applied maths modules. The flexibility in choice of applied modules has led to concerns that many students would proceed to study engineering at university with little background in mechanics. A survey of aerospace and mechanical engineering students in our university revealed that a combination of mechanics and statistics (the basic module in both) was by far the most popular choice of optional modules in A-level Mathematics, meaning that only about one-quarter of the class had studied mechanics beyond the basic module within school mathematics. Investigation of student performance in two core, first-year engineering courses, which build on a mechanics foundation, indicated that any benefits for students who studied the extra mechanics at school were small. These results give concern about the depth of understanding in mechanics gained during A-level Mathematics.
Resumo:
This thesis is an attempt to throw light on the works of some Indian Mathematicians who wrote in Arabic or persian In the Introductory Chapter on outline of general history of Mathematics during the eighteenth Bnd nineteenth century has been sketched. During that period there were two streams of Mathematical activity. On one side many eminent scholers, who wrote in Sanskrit, .he l d the field as before without being much influenced by other sources. On the other side there were scholars whose writings were based on Arabic and Persian text but who occasionally drew upon other sources also.