873 resultados para MATHEMATICS -- Study


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The primary purpose of this research was to examine individual differences in learning from worked examples. By integrating cognitive style theory and cognitive load theory, it was hypothesised that an interaction existed between individual cognitive style and the structure and presentation of worked examples in their effect upon subsequent student problem solving. In particular, it was hypothesised that Analytic-Verbalisers, Analytic-Imagers, and Wholist-lmagers would perform better on a posttest after learning from structured-pictorial worked examples than after learning from unstructured worked examples. For Analytic-Verbalisers it was reasoned that the cognitive effort required to impose structure on unstructured worked examples would hinder learning. Alternatively, it was expected that Wholist-Verbalisers would display superior performances after learning from unstructured worked examples than after learning from structured-pictorial worked examples. The images of the structured-pictorial format, incongruent with the Wholist-Verbaliser style, would be expected to split attention between the text and the diagrams. The information contained in the images would also be a source of redundancy and not easily ignored in the integrated structured-pictorial format. Despite a number of authors having emphasised the need to include individual differences as a fundamental component of problem solving within domainspecific subjects such as mathematics, few studies have attempted to investigate a relationship between mathematical or science instructional method, cognitive style, and problem solving. Cognitive style theory proposes that the structure and presentation of learning material is likely to affect each of the four cognitive styles differently. No study could be found which has used Riding's (1997) model of cognitive style as a framework for examining the interaction between the structural presentation of worked examples and an individual's cognitive style. 269 Year 12 Mathematics B students from five urban and rural secondary schools in Queensland, Australia participated in the main study. A factorial (three treatments by four cognitive styles) between-subjects multivariate analysis of variance indicated a statistically significant interaction. As the difficulty of the posttest components increased, the empirical evidence supporting the research hypotheses became more pronounced. The rigour of the study's theoretical framework was further tested by the construction of a measure of instructional efficiency, based on an index of cognitive load, and the construction of a measure of problem-solving efficiency, based on problem-solving time. The consistent empirical evidence within this study that learning from worked examples is affected by an interaction of cognitive style and the structure and presentation of the worked examples emphasises the need to consider individual differences among senior secondary mathematics students to enhance educational opportunities. Implications for teaching and learning are discussed and recommendations for further research are outlined.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society (Kirschenman and Brenner 2010)d. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of mathematics engineering curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour, and the effectiveness of problem solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We discuss the inverse problem associated with the propagation of the field autocorrelation of light through a highly scattering object like tissue. In the first part of the work, we reconstructed the optical absorption coefficient mu(u) and particle diffusion coefficient D-B from simulated measurements which are integrals of a quantity computed from the measured intensity and intensity autocorrelation g(2)(tau) at the boundary. In the second part we recover the mean square displacement (MSD) distribution of particles in an inhomogeneous object from the sampled g(2)(tau) measure on the boundary. From the MSD, we compute the storage and loss moduli distributions in the object. We have devised computationally easy methods to construct the sensitivity matrices which are used in the iterative reconstruction algorithms for recovering these parameters from the measurements. The results of the reconstruction of mu(a), D-B, MSD and the viscoelastic parameters, which are presented, show reasonable good position and quantitative accuracy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This research study investigates the image of mathematics held by 5th-year post-primary students in Ireland. For this study, image of mathematics is conceptualized as a mental representation or view of mathematics, presumably constructed as a result of past experiences, mediated through school, parents, peers or society. It is also understood to include attitudes, beliefs, emotions, self-concept and motivation in relation to mathematics. This study explores the image of mathematics held by a sample of 356 5th-year students studying ordinary level mathematics. Students were aged between 15 and 18 years. In addition, this study examines the factors influencing students images of mathematics and the possible reasons for students choosing not to study higher level mathematics for the Leaving Certificate. The design for this study is chiefly explorative. A questionnaire survey was created containing both quantitative and qualitative methods to investigate the research interest. The quantitative aspect incorporated eight pre-established scales to examine students attitudes, beliefs, emotions, self-concept and motivation regarding mathematics. The qualitative element explored students past experiences of mathematics, their causal attributions for success or failure in mathematics and their influences in mathematics. The quantitative and qualitative data was analysed for all students and also for students grouped by gender, prior achievement, type of post-primary school attending, co-educational status of the post-primary school and the attendance of a Project Maths pilot school. Students images of mathematics were seen to be strongly indicated by their attitudes (enjoyment and value), beliefs, motivation, self-concept and anxiety, with each of these elements strongly correlated with each other, particularly self-concept and anxiety. Students current images of mathematics were found to be influenced by their past experiences of mathematics, by their mathematics teachers, parents and peers, and by their prior mathematical achievement. Gender differences occur for students in their images of mathematics, with males having more positive images of mathematics than females and this is most noticeable with regards to anxiety about mathematics. Mathematics anxiety was identified as a possible reason for the low number of students continuing with higher level mathematics for the Leaving Certificate. Some students also expressed low mathematical self-concept with regards to higher level mathematics specifically. Students with low prior achievement in mathematics tended to believe that mathematics requires a natural ability which they do not possess. Rote-learning was found to be common among many students in the sample. The most positive image of mathematics held by students was the problem-solving image, with resulting implications for the new Project Maths syllabus in post-primary education. Findings from this research study provide important insights into the image of mathematics held by the sample of Irish post-primary students and make an innovative contribution to mathematics education research. In particular, findings contribute to the current national interest in Ireland in post-primary mathematics education, highlighting issues regarding the low uptake of higher level mathematics for the Leaving Certificate and also making a preliminary comparison between students who took part in the piloting of Project Maths and students who were more recently introduced to the new syllabus. This research study also holds implications for mathematics teachers, parents and the mathematics education community in Ireland, with some suggestions made on improving students images of mathematics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three grade three mathematics textbooks were selected arbitrarily (every other) from a total of six currently used in the schools of Ontario. These textbooks were examined through content analysis in order to determine the extent (i. e., the frequency of occurrence) to which problem solving strategies appear in the problems and exercises of grade three mathematics textbooks, and how well they carry through the Ministry's educational goals set out in The Formative Years. Based on Polya's heuristic model, a checklist was developed by the researcher. The checklist had two main categories, textbook problems and process problems and a finer classification according to the difficulty level of a textbook problem; also six commonly used problem solving strategies for the analysis of a process problem. Topics to be analyzed were selected from the subject guideline The Formative Years, and the same topics were selected from each textbook. Frequencies of analyzed problems and exercises were compiled and tabulated textbook by textbook and topic by topic. In making comparisons, simple frequency count and percentage were used in the absence of any known criteria available for judging highor low frequency. Each textbook was coded by three coders trained to use the checklist. The results of analysis showed that while there were large numbers of exercises in each textbook, not very many were framed as problems according to Polya' s model and that process problems form a small fraction of the number of analyzed problems and exercises. There was no pattern observed as to the systematic placement of problems in the textbooks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Forty grade 9 students were selected from a small rural board in southern Ontario. The students were in two classes and were treated as two groups. The treatment group received instruction in the Logical Numerical Problem Solving Strategy every day for 37 minutes over a 6 week period. The control group received instruction in problem solving without this strategy over the same time period. Then the control group received the treat~ent and the treatment group received the instruction without the strategy. Quite a large variance was found in the problem solving ability of students in grade 9. It was also found that the growth of the problem solving ability achievement of students could be measured using growth strands based upon the results of the pilot study. The analysis of the results of the study using t-tests and a MANOVA demonstrated that the teaching of the strategy did not significaritly (at p s 0.05) increase the problem solving achievement of the students. However, there was an encouraging trend seen in the data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This research studioo the effect of integrated instruction in mathematics and~ science on student achievement in and attitude towards both mathematics and science. A group of grade 9 academic students received instruction in both science and mathematics in an integrated program specifically developed for the purposes of the research. This group was compared to a control group that had received science and mathematics instruction in a traditional, nonintegrated program. The findings showed that in all measures of attitude, there was no significant difference between the students who participated in the integrated science and mathematics program and those who participated in a traditional science and mathematics program. The findings also revealed that integration did improve achievement on some of the measures used. The performance on mathematics open-ended problem-solving tasks improved after participation in the integrated program, suggesting that the integrated students were better able to apply their understanding of mathematics in a real-life context. The performance on the final science exam was also improved for the integrated group. Improvement was not noted on the other measures, which included EQAO scores and laboratory practical tasks. These results raise the issue of the suitability of the instruments used to gauge both achievement and attitude. The accuracy and suitability of traditional measures of achievement are considered. It is argued that they should not necessarily be used as the measure of the value of integrated instruction in a science and mathematics classroom.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ontario bansho is an emergent mathematics instructional strategy used by teachers working within communities of practice that has been deemed to have a transformational effect on teachers' professional learning of mathematics. This study sought to answer the following question: How does teachers' implementation of Ontario bansho within their communities of practice inform their professional learning process concerning mathematics-for-teaching? Two other key questions also guided the study: What processes support teachers' professional learning of content-for-teaching? What conditions support teachers' professional learning of content-for-teaching? The study followed an interpretive phenomenological approach to collect data using a purposive sampling of teachers as participants. The researcher conducted interviews and followed an interpretive approach to data analysis to investigate how teachers construct meaning and create interpretations through their social interactions. The study developed a model of professional learning made up of 3 processes, informing with resources, engaging with students, and visualizing and schematizing in which the participants engaged and 2 conditions, ownership and community that supported the 3 processes. The 3 processes occur in ways that are complex, recursive, nonpredictable, and contextual. This model provides a framework for facilitators and leaders to plan for effective, content-relevant professional learning by placing teachers, students, and their learning at the heart of professional learning.