865 resultados para Locally Compact Spaces
Multipliers on Spaces of Functions on a Locally Compact Abelian Group with Values in a Hilbert Space
Resumo:
2000 Mathematics Subject Classification: Primary 43A22, 43A25.
Resumo:
A counterpart of the Mackey–Arens Theorem for the class of locally quasi-convex topological Abelian groups (LQC-groups) was initiated in Chasco et al. (Stud Math 132(3):257–284, 1999). Several authors have been interested in the problems posed there and have done clarifying contributions, although the main question of that source remains open. Some differences between the Mackey Theory for locally convex spaces and for locally quasi-convex groups, stem from the following fact: The supremum of all compatible locally quasi-convex topologies for a topological abelian group G may not coincide with the topology of uniform convergence on the weak quasi-convex compact subsets of the dual groupG∧. Thus, a substantial part of the classical Mackey–Arens Theorem cannot be generalized to LQC-groups. Furthermore, the mentioned fact gives rise to a grading in the property of “being a Mackey group”, as defined and thoroughly studied in Díaz Nieto and Martín-Peinador (Proceedings in Mathematics and Statistics 80:119–144, 2014). At present it is not known—and this is the main open question—if the supremum of all the compatible locally quasi-convex topologies on a topological group is in fact a compatible topology. In the present paper we do a sort of historical review on the Mackey Theory, and we compare it in the two settings of locally convex spaces and of locally quasi-convex groups. We point out some general questions which are still open, under the name of Problems.
Resumo:
The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.
Resumo:
We investigate the role of local connectedness in utility theory and prove that any continuous total preorder on a locally connected separable space is continuously representable. This is a new simple criterion for the representability of continuous preferences, and is not a consequence of the standard theorems in utility theory that use conditions such as connectedness and separability, second countability, or path-connectedness. Finally we give applications to problems involving the existence of value functions in population ethics and to the problem of proving the existence of continuous utility functions in general equilibrium models with land as one of the commodities. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
∗ Supported by Research grants GAUK 190/96 and GAUK 1/1998
Resumo:
2000 Mathematics Subject Classification: 54C10, 54D15, 54G12.
Resumo:
We classify up to isomorphism the spaces of compact operators K(E, F), where E and F are Banach spaces of all continuous functions defined on the compact spaces 2(m) circle plus [0, alpha], the topological sum of Cantor cubes 2(m) and the intervals of ordinal numbers [0, alpha]. More precisely, we prove that if 2(m) and aleph(gamma) are not real-valued measurable cardinals and n >= aleph(0) is not sequential cardinal, then for every ordinals xi, eta, lambda and mu with xi >= omega(1), eta >= omega(1), lambda = mu < omega or lambda, mu is an element of [omega(gamma), omega(gamma+1)[, the following statements are equivalent: (a) K(C(2(m) circle plus [0, lambda]), C(2(n) circle plus [0, xi])) and K(C(2(m) circle plus [0, mu]), C(2(n) circle plus [0, eta]) are isomorphic. (b) Either C([0, xi]) is isomorphic to C([0, eta] or C([0, xi]) is isomorphic to C([0, alpha p]) and C([0, eta]) is isomorphic to C([0,alpha q]) for some regular cardinal alpha and finite ordinals p not equal q. Thus, it is relatively consistent with ZFC that this result furnishes a complete isomorphic classification of these spaces of compact operators. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We extend and provide a vector-valued version of some results of C. Samuel about the geometric relations between the spaces of nuclear operators N(E, F) and spaces of compact operators K(E, F), where E and F are Banach spaces C(K) of all continuous functions defined on the countable compact metric spaces K equipped with the supremum norm. First we continue Samuel's work by proving that N(C(K-1), C(K-2)) contains no subspace isomorphic to K(C(K-3), C(K-4)) whenever K-1, K-2, K-3 and K-4 are arbitrary infinite countable compact metric spaces. Then we show that it is relatively consistent with ZFC that the above result and the main results of Samuel can be extended to C(K-1, X), C(K-2,Y), C(K-3, X) and C(K-4, Y) spaces, where K-1, K-2, K-3 and K-4 are arbitrary infinite totally ordered compact spaces; X comprises certain Banach spaces such that X* are isomorphic to subspaces of l(1); and Y comprises arbitrary subspaces of l(p), with 1 < p < infinity. Our results cover the cases of some non-classical Banach spaces X constructed by Alspach, by Alspach and Benyamini, by Benyamini and Lindenstrauss, by Bourgain and Delbaen and also by Argyros and Haydon.
Resumo:
For a locally compact Hausdorff space K and a Banach space X we denote by C-0(K, X) the space of X-valued continuous functions on K which vanish at infinity, provided with the supremum norm. Let n be a positive integer, Gamma an infinite set with the discrete topology, and X a Banach space having non-trivial cotype. We first prove that if the nth derived set of K is not empty, then the Banach-Mazur distance between C-0(Gamma, X) and C-0(K, X) is greater than or equal to 2n + 1. We also show that the Banach-Mazur distance between C-0(N, X) and C([1, omega(n)k], X) is exactly 2n + 1, for any positive integers n and k. These results extend and provide a vector-valued version of some 1970 Cambern theorems, concerning the cases where n = 1 and X is the scalar field.
Resumo:
We analyze reproducing kernel Hilbert spaces of positive definite kernels on a topological space X being either first countable or locally compact. The results include versions of Mercer's theorem and theorems on the embedding of these spaces into spaces of continuous and square integrable functions.
Resumo:
∗ This work was partially supported by the National Foundation for Scientific Researches at the Bulgarian Ministry of Education and Science under contract no. MM-427/94.
Resumo:
AMS Subj. Classification: MSC2010: 42C10, 43A50, 43A75
Resumo:
We provide a complete isomorphic classification of the Banach spaces of continuous functions on the compact spaces 2(m) circle plus [0, alpha], the topological sums of Cantor cubes 2(m), with m smaller than the first sequential cardinal, and intervals of ordinal numbers [0, alpha]. In particular, we prove that it is relatively consistent with ZFC that the only isomorphism classes of C(2(m) circle plus [0, alpha]) spaces with m >= N(0) and alpha >= omega(1) are the trivial ones. This result leads to some elementary questions on large cardinals.
Resumo:
For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y aS, X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelof spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelof. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense sigma-compact subspace can have arbitrary extent. It is proved that for any omega (1)-monolithic compact space X, if C (p) (X)is star countable then it is Lindelof.
Resumo:
The Weyl-Wigner prescription for quantization on Euclidean phase spaces makes essential use of Fourier duality. The extension of this property to more general phase spaces requires the use of Kac algebras, which provide the necessary background for the implementation of Fourier duality on general locally compact groups. Kac algebras - and the duality they incorporate - are consequently examined as candidates for a general quantization framework extending the usual formalism. Using as a test case the simplest nontrivial phase space, the half-plane, it is shown how the structures present in the complete-plane case must be modified. Traces, for example, must be replaced by their noncommutative generalizations - weights - and the correspondence embodied in the Weyl-Wigner formalism is no longer complete. Provided the underlying algebraic structure is suitably adapted to each case, Fourier duality is shown to be indeed a very powerful guide to the quantization of general physical systems.