986 resultados para Laplace Operator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nella tesi viene descritto il Network Diffusion Model, ovvero il modello di A. Ray, A. Kuceyeski, M. Weiner inerente i meccanismi di progressione della demenza senile. In tale modello si approssima l'encefalo sano con una rete cerebrale (ovvero un grafo pesato), si identifica un generale fattore di malattia e se ne analizza la propagazione che avviene secondo meccanismi analoghi a quelli di un'infezione da prioni. La progressione del fattore di malattia e le conseguenze macroscopiche di tale processo(tra cui principalmente l'atrofia corticale) vengono, poi, descritte mediante approccio matematico. I risultati teoretici vengono confrontati con quanto osservato sperimentalmente in pazienti affetti da demenza senile. Nella tesi, inoltre, si fornisce una panoramica sui recenti studi inerenti i processi neurodegenerativi e si costruisce il contesto matematico di riferimento del modello preso in esame. Si presenta una panoramica sui grafi finiti, si introduce l'operatore di Laplace sui grafi e si forniscono stime dall'alto e dal basso per gli autovalori. Al fine di costruire una cornice matematica completa si analizza la relazione tra caso discreto e continuo: viene descritto l'operatore di Laplace-Beltrami sulle varietà riemanniane compatte e vengono fornite stime dall'alto per gli autovalori dell'operatore di Laplace-Beltrami associato a tali varietà a partire dalle stime dall'alto per gli autovalori del laplaciano sui grafi finiti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 35J05, 35C15, 44P05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 35G35, 32A30, 30G35.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La présente thèse porte sur différentes questions émanant de la géométrie spectrale. Ce domaine des mathématiques fondamentales a pour objet d'établir des liens entre la géométrie et le spectre d'une variété riemannienne. Le spectre d'une variété compacte fermée M munie d'une métrique riemannienne $g$ associée à l'opérateur de Laplace-Beltrami est une suite de nombres non négatifs croissante qui tend vers l’infini. La racine carrée de ces derniers représente une fréquence de vibration de la variété. Cette thèse présente quatre articles touchant divers aspects de la géométrie spectrale. Le premier article, présenté au Chapitre 1 et intitulé « Superlevel sets and nodal extrema of Laplace eigenfunctions », porte sur la géométrie nodale d'opérateurs elliptiques. L’objectif de mes travaux a été de généraliser un résultat de L. Polterovich et de M. Sodin qui établit une borne sur la distribution des extrema nodaux sur une surface riemannienne pour une assez vaste classe de fonctions, incluant, entre autres, les fonctions propres associées à l'opérateur de Laplace-Beltrami. La preuve fournie par ces auteurs n'étant valable que pour les surfaces riemanniennes, je prouve dans ce chapitre une approche indépendante pour les fonctions propres de l’opérateur de Laplace-Beltrami dans le cas des variétés riemanniennes de dimension arbitraire. Les deuxième et troisième articles traitent d'un autre opérateur elliptique, le p-laplacien. Sa particularité réside dans le fait qu'il est non linéaire. Au Chapitre 2, l'article « Principal frequency of the p-laplacian and the inradius of Euclidean domains » se penche sur l'étude de bornes inférieures sur la première valeur propre du problème de Dirichlet du p-laplacien en termes du rayon inscrit d’un domaine euclidien. Plus particulièrement, je prouve que, si p est supérieur à la dimension du domaine, il est possible d'établir une borne inférieure sans aucune hypothèse sur la topologie de ce dernier. L'étude de telles bornes a fait l'objet de nombreux articles par des chercheurs connus, tels que W. K. Haymann, E. Lieb, R. Banuelos et T. Carroll, principalement pour le cas de l'opérateur de Laplace. L'adaptation de ce type de bornes au cas du p-laplacien est abordée dans mon troisième article, « Bounds on the Principal Frequency of the p-Laplacian », présenté au Chapitre 3 de cet ouvrage. Mon quatrième article, « Wolf-Keller theorem for Neumann Eigenvalues », est le fruit d'une collaboration avec Guillaume Roy-Fortin. Le thème central de ce travail gravite autour de l'optimisation de formes dans le contexte du problème aux valeurs limites de Neumann. Le résultat principal de cet article est que les valeurs propres de Neumann ne sont pas toujours maximisées par l'union disjointe de disques arbitraires pour les domaines planaires d'aire fixée. Le tout est présenté au Chapitre 4 de cette thèse.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider a Cauchy problem for the Laplace equation in a bounded region containing a cut, where the region is formed by removing a sufficiently smooth arc (the cut) from a bounded simply connected domain D. The aim is to reconstruct the solution on the cut from the values of the solution and its normal derivative on the boundary of the domain D. We propose an alternating iterative method which involves solving direct mixed problems for the Laplace operator in the same region. These mixed problems have either a Dirichlet or a Neumann boundary condition imposed on the cut and are solved by a potential approach. Each of these mixed problems is reduced to a system of integral equations of the first kind with logarithmic and hypersingular kernels and at most a square root singularity in the densities at the endpoints of the cut. The full discretization of the direct problems is realized by a trigonometric quadrature method which has super-algebraic convergence. The numerical examples presented illustrate the feasibility of the proposed method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator $\Delta_+^{(\alpha,\beta,\gamma)}:= D_{x_0^+}^{1+\alpha} +D_{y_0^+}^{1+\beta} +D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$, and the fractional derivatives $D_{x_0^+}^{1+\alpha}$, $D_{y_0^+}^{1+\beta}$, $D_{z_0^+}^{1+\gamma}$ are in the Riemann-Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator $\Delta_+^{(\alpha,\beta,\gamma)}$ in classes of functions admitting a summable fractional derivative. Making use of the Mittag-Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, by using the method of separation of variables, we obtain eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator defined via fractional Caputo derivatives. The solutions are expressed using the Mittag-Leffler function and we show some graphical representations for some parameters. A family of fundamental solutions of the corresponding fractional Dirac operator is also obtained. Particular cases are considered in both cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we analyze the behavior of the Laplace operator with Neumann boundary conditions in a thin domain of the type R(epsilon) = {(x(1), x(2)) is an element of R(2) vertical bar x(1) is an element of (0, 1), 0 < x(2) < epsilon G(x(1), x(1)/epsilon)} where the function G(x, y) is periodic in y of period L. Observe that the upper boundary of the thin domain presents a highly oscillatory behavior and, moreover, the height of the thin domain, the amplitude and period of the oscillations are all of the same order, given by the small parameter epsilon. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce mémoire a pour but d'étudier les propriétés des solutions à l'équation aux valeurs propres de l'opérateur de Laplace sur le disque lorsque les valeurs propres tendent vers l'in ni. En particulier, on s'intéresse au taux de croissance des normes ponctuelle et L1. Soit D le disque unitaire et @D sa frontière (le cercle unitaire). On s'inté- resse aux solutions de l'équation aux valeurs propres f = f avec soit des conditions frontières de Dirichlet (fj@D = 0), soit des conditions frontières de Neumann ( @f @nj@D = 0 ; notons que sur le disque, la dérivée normale est simplement la dérivée par rapport à la variable radiale : @ @n = @ @r ). Les fonctions propres correspondantes sont données par : f (r; ) = fn;m(r; ) = Jn(kn;mr)(Acos(n ) + B sin(n )) (Dirichlet) fN (r; ) = fN n;m(r; ) = Jn(k0 n;mr)(Acos(n ) + B sin(n )) (Neumann) où Jn est la fonction de Bessel de premier type d'ordre n, kn;m est son m- ième zéro et k0 n;m est le m-ième zéro de sa dérivée (ici on dénote les fonctions propres pour le problème de Dirichlet par f et celles pour le problème de Neumann par fN). Dans ce cas, on obtient que le spectre SpD( ) du laplacien sur D, c'est-à-dire l'ensemble de ses valeurs propres, est donné par : SpD( ) = f : f = fg = fk2 n;m : n = 0; 1; 2; : : :m = 1; 2; : : :g (Dirichlet) SpN D( ) = f : fN = fNg = fk0 n;m 2 : n = 0; 1; 2; : : :m = 1; 2; : : :g (Neumann) En n, on impose que nos fonctions propres soient normalisées par rapport à la norme L2 sur D, c'est-à-dire : R D F2 da = 1 (à partir de maintenant on utilise F pour noter les fonctions propres normalisées et f pour les fonctions propres quelconques). Sous ces conditions, on s'intéresse à déterminer le taux de croissance de la norme L1 des fonctions propres normalisées, notée jjF jj1, selon . Il est vi important de mentionner que la norme L1 d'une fonction sur un domaine correspond au maximum de sa valeur absolue sur le domaine. Notons que dépend de deux paramètres, m et n et que la dépendance entre et la norme L1 dépendra du rapport entre leurs taux de croissance. L'étude du comportement de la norme L1 est étroitement liée à l'étude de l'ensemble E(D) qui est l'ensemble des points d'accumulation de log(jjF jj1)= log : Notre principal résultat sera de montrer que [7=36; 1=4] E(B2) [1=18; 1=4]: Le mémoire est organisé comme suit. L'introdution et les résultats principaux sont présentés au chapitre 1. Au chapitre 2, on rappelle quelques faits biens connus concernant les fonctions propres du laplacien sur le disque et sur les fonctions de Bessel. Au chapitre 3, on prouve des résultats concernant la croissance de la norme ponctuelle des fonctions propres. On montre notamment que, si m=n ! 0, alors pour tout point donné (r; ) du disque, la valeur de F (r; ) décroit exponentiellement lorsque ! 1. Au chapitre 4, on montre plusieurs résultats sur la croissance de la norme L1. Le probl ème avec conditions frontières de Neumann est discuté au chapitre 5 et on présente quelques résultats numériques au chapitre 6. Une brève discussion et un sommaire de notre travail se trouve au chapitre 7.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les façons d'aborder l'étude du spectre du laplacien sont multiples. Ce mémoire se concentre sur les partitions spectrales optimales de domaines planaires. Plus précisément, lorsque nous imposons des conditions aux limites de Dirichlet, nous cherchons à trouver la ou les partitions qui réalisent l'infimum (sur l'ensemble des partitions à un certain nombre de composantes) du maximum de la première valeur propre du laplacien sur tous ses sous-domaines. Dans les dernières années, cette question a été activement étudiée par B. Helffer, T. Hoffmann-Ostenhof, S. Terracini et leurs collaborateurs, qui ont obtenu plusieurs résultats analytiques et numériques importants. Dans ce mémoire, nous proposons un problème analogue, mais pour des conditions aux limites de Neumann cette fois. Dans ce contexte, nous nous intéressons aux partitions spectrales maximales plutôt que minimales. Nous cherchons alors à vérifier le maximum sur toutes les $k$-partitions possibles du minimum de la première valeur propre non nulle de chacune des composantes. Cette question s'avère plus difficile que sa semblable dans la mesure où plusieurs propriétés des valeurs propres de Dirichlet, telles que la monotonicité par rapport au domaine, ne tiennent plus. Néanmoins, quelques résultats sont obtenus pour des 2-partitions de domaines symétriques et des partitions spécifiques sont trouvées analytiquement pour des domaines rectangulaires. En outre, des propriétés générales des partitions spectrales optimales et des problèmes ouverts sont abordés.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let a > 0, Omega subset of R(N) be a bounded smooth domain and - A denotes the Laplace operator with Dirichlet boundary condition in L(2)(Omega). We study the damped wave problem {u(tt) + au(t) + Au - f(u), t > 0, u(0) = u(0) is an element of H(0)(1)(Omega), u(t)(0) = v(0) is an element of L(2)(Omega), where f : R -> R is a continuously differentiable function satisfying the growth condition vertical bar f(s) - f (t)vertical bar <= C vertical bar s - t vertical bar(1 + vertical bar s vertical bar(rho-1) + vertical bar t vertical bar(rho-1)), 1 < rho < (N - 2)/(N + 2), (N >= 3), and the dissipativeness condition limsup(vertical bar s vertical bar ->infinity) s/f(s) < lambda(1) with lambda(1) being the first eigenvalue of A. We construct the global weak solutions of this problem as the limits as eta -> 0(+) of the solutions of wave equations involving the strong damping term 2 eta A(1/2)u with eta > 0. We define a subclass LS subset of C ([0, infinity), L(2)(Omega) x H(-1)(Omega)) boolean AND L(infinity)([0, infinity), H(0)(1)(Omega) x L(2)(Omega)) of the `limit` solutions such that through each initial condition from H(0)(1)(Omega) x L(2)(Omega) passes at least one solution of the class LS. We show that the class LS has bounded dissipativeness property in H(0)(1)(Omega) x L(2)(Omega) and we construct a closed bounded invariant subset A of H(0)(1)(Omega) x L(2)(Omega), which is weakly compact in H(0)(1)(Omega) x L(2)(Omega) and compact in H({I})(s)(Omega) x H(s-1)(Omega), s is an element of [0, 1). Furthermore A attracts bounded subsets of H(0)(1)(Omega) x L(2)(Omega) in H({I})(s)(Omega) x H(s-1)(Omega), for each s is an element of [0, 1). For N = 3, 4, 5 we also prove a local uniqueness result for the case of smooth initial data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let M^{2n} be a symplectic toric manifold with a fixed T^n-action and with a toric K\"ahler metric g. Abreu asked whether the spectrum of the Laplace operator $\Delta_g$ on $\mathcal{C}^\infty(M)$ determines the moment polytope of M, and hence by Delzant's theorem determines M up to symplectomorphism. We report on some progress made on an equivariant version of this conjecture. If the moment polygon of M^4 is generic and does not have too many pairs of parallel sides, the so-called equivariant spectrum of M and the spectrum of its associated real manifold M_R determine its polygon, up to translation and a small number of choices. For M of arbitrary even dimension and with integer cohomology class, the equivariant spectrum of the Laplacian acting on sections of a naturally associated line bundle determines the moment polytope of M.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present examples of isospectral operators that do not have the same heat content. Several of these examples are planar polygons that are isospectral for the Laplace operator with Dirichlet boundary conditions. These include examples with infinitely many components. Other planar examples have mixed Dirichlet and Neumann boundary conditions. We also consider Schrodinger operators acting in L-2[0,1] with Dirichlet boundary conditions, and show that an abundance of isospectral deformations do not preserve the heat content.